Выбрать главу

Необычные материалы

Если оставить в стороне микроэлектронику, то самыми массовыми нанопродуктами окажутся разного рода сплавы, покрытия и композитные материалы, приобретающие особые свойства благодаря своей микроструктуре. Аморфные и нанодисперсные состояния многих металлов кардинально отличаются по своим характеристикам от их кристаллических форм. При этом в одном материале порой удается совместить крайне противоречивые механические свойства: одновременно увеличить твердость и пластичность. Еще шире перспективы применения разного рода композитов, когда в относительно мягкую, например хромовую, матрицу вводится крайне твердый материал —карбид вольфрама. В этом случае получается всем давно известный твердый сплав победит. Однако если полвека назад его делали, используя частички карбида размером с десятки микрон, то сегодня используют порошки размером существенно меньше микрона. Благодаря этому он не только становится тверже, но и более гладко режет сталь.

Самый тонкий в мире провод из углеродных нанотрубок на фоне платиновых электродов. Толщина провода всего около 10 атомов. Увеличение около 500 000х

Особые механические свойства — лишь часть достоинств новых сплавов. Одним из знаковых успехов последних лет была разработка целого ряда прочных и легких биологически совместимых материалов. В активно развивающемся направлении по созданию бактерицидных красок, покрытий и перевязочных материалов все шире применяются разного рода нанодисперсные материалы для борьбы с вредоносной флорой и фауной.

Нанопорошки активно используются при изготовлении всех видов магнитных носителей информации — от полоски с данными на кредитной карте до компьютерных жестких дисков. При этом у последних слой магнитного материала для снижения износа покрывается алмазоподобной пленкой толщиной несколько нанометров и тончайшим нанометровым слоем специальной смазки. Вот и получается, что у каждого из нас уже есть несколько устройств, в которых активно проявили себя нанотехнологические достижения.

Специальные смеси нанопорошков «лечат» двигатели внутреннего сгорания и трущиеся узлы. Микропористые материалы подходят для хранения водорода и сбора разлившейся по воде нефти. Адресная доставка лекарств в раковую опухоль и микрокапсулированные препараты тоже не могут обойтись без разработки специальных саморегулирующихся процессов, массово происходящих на наноуровне. Используя наноструктурированные полимеры и углеродные нанотрубки, сегодня пытаются сделать искусственные мышцы и дешевые солнечные элементы. Кстати, именно углеродные нанотрубки по праву могут считаться символом начинающейся нанореволюции.

Основные исторические вехи  

1974 г. — выдан патент на первое устройство молекулярной электроники

1981 г . — изобретен сканирующий туннельный микроскоп (СТМ) 1985 г. — открыты фуллерены

1986 г. — изобретен атомно-силовой микроскоп (АСМ)

1987 г . — создан первый одноэлектронный транзистор

1991 г . — открыты углеродные нанотрубки

1993 г. — в США организована первая нанотехнологическая лаборатория

1997 г . — создано нанотехнологическое устройство на основе ДНК

2000 г. — в США принята Национальная нанотехнологическая инициатива

2002 г . — удалось получить единый механизм, соединив углеродную нанотрубку с ДНК

2005 г. — обнаружено множественное рождение электронов в фотоэлементах из наноточек

2006 г. — произведена нитка и соткан первый образец ткани из углеродных нанотрубок

Молекула фуллерена C60 напоминает футбольный мяч, составленный из правильных пятии шестиугольников Вездесущий углерод

Трудно выделить какое-то особое научное открытие, произошедшее в конце XX века, заставившее правительства промышленно развитых стран срочно пойти на штурм основной технологии XXI века. Пожалуй, именно открытие фуллеренов и углеродных нанотрубок стало ключевым фактором для осознания важности такого рода исследований. Сферические молекулы фуллерена С sub 60 /sub и свернутые в трубочку графитовые плоскости потрясли не только физиков и химиков, но и материаловедов с технологами. Элемент, ответственный за существование жизни, преподнес очередной сюрприз, показав, что и без помощи кислорода и водорода он способен образовывать гигантские молекулы, длина которых в миллионы раз превышает их диаметр.

Сегодня умеют массово выращивать однослойные и многослойные углеродные нанотрубки длиной сотни микрон. И это при том, что диаметр такого волокна не превышает нескольких десятков нанометров. Растут они на подложке из кремния, словно густой лес, который потом можно «срубить» и сплести в одну длинную нить. Сотрудники Техасского университета в Далласе (The University of Texas at Dallas) из 1 см2 такого «леса» вытягивают несколько метров высокопрочной почти невидимой нити толщиной несколько микрон. Сделанные из нее 20-микронные «канаты» оказались в 5 раз прочнее самых крепких кевларовых нитей такого же диаметра. Пуленепробиваемые жилеты и самолеты из углеродных нанотрубок делать пока еще не начали, но образец материи на миниатюрном ткацком станке сплели и провели разного рода испытания.

Создание материала, на порядок более прочного и легкого, чем сталь, — давнишняя мечта материаловедов и инженеров. И сегодня она уже близка к своему воплощению. Причем, учитывая темпы внедрения полезных для жизни научных открытий, революция в материаловедении не за горами. Углеродные нанотрубки имеют не только уникальные механические свойства, но и необычные электрические. Они бывают с полупроводниковым и металлическим типом проводимости, а значит, используя их, можно делать не только углеродные интегральные микросхемы, но и электрические провода для обычных кремниевых. Сопротивление однослойной нанотрубки не зависит от ее длины, благодаря этому их удобно использовать для соединения логических элементов внутри микроэлектронных устройств. Допустимая плотность тока в нанотрубках много больше, чем в металлических проводах такого же сечения, и в сто раз превышает лучшие достижения для сверхпроводников.

Про уникальные свойства углеродных нанотрубок написаны сотни книг, и даже простое перечисление областей их возможного применения займет не одну журнальную полосу. Похоже, что этот нанообъект первым найдет массовое применение в производстве микросхем памяти, в самолето- и автомобилестроении. Особый интерес к углеродным волокнам проявляют сегодня космические агентства, надеющиеся с их помощью сделать более компактными и мобильными будущие автоматические космические аппараты. С надеждой смотрят на углерод и строители пресловутого космического лифта, который должен открыть дорогу в космос всем желающим.

Первая российская нанотехнологическая установка Nanofab-100 демонстрировалась в 2006 году на X российском экономическом форуме в Санкт-Петербурге накануне встречи «Большой восьмерки». Включает атомно-силовой и туннельный микроскопы, а также модуль для модификации материалов сфокусированными ионными пучками (справа) и модуль для наращивания нанопленок

Миллиарды в наноиндустрию

«Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России» — так называется Федеральная целевая программа, одной из частей которой значится «Индустрия наносистем и материалы». Здесь определено то, что российское правительство намерено вкладывать деньги в развитие нанотехнологий. Почти 5 миллиардов рублей было истрачено за 2005 и 2006 годы на генерацию знаний, разработку и коммерциализацию технологий. Еще больше будет вложено в освоение наномира в ближайшие пять лет. С 2007 по 2012 год общий объем финансирования приоритетных направлений составит почти 200 миллиардов рублей. Причем на наносистемы и материалы из этой суммы будет истрачено не менее трети, что вполне сопоставимо с американским миллиардом долларов, выделяемым ежегодно на развитие нанотехнологий. В 2007 году из федерального бюджета на развитие приоритетных направлений выделено 11,7 миллиарда рублей, из которых почти 40% — на работы в области нанотехнологий — в два с лишним раза больше, чем на энергетику и энергосбережение. Похоже, что и Федеральное агентство по науке и инновациям планирует зарабатывать доллары, продавая наноструктурированные материалы и изделия из них. В материаловедческой сфере у России пока есть определенный задел и достойное место в мировой экономике. Наши достижения по части производства самого массового и ликвидного продукта современных нанотехнологий — интегральных микросхем — мало кого в России могут порадовать, и промышленные предприятия, традиционно занимавшиеся микроэлектроникой, в рамках собственных программ развития наноиндустрии делают нанодисперсные материалы, ремонтно-восстановительные смеси и композитные материалы на основе углеродных нанотрубок.