Особый интерес у радиоастрономов всего мира вызывает знаменитая волна длиной в 21 сантиметр. В 1945 году голландский астрофизик Ван де Холст высказал гипотезу о том, что атомы водорода в межзвездном пространстве должны испускать радиоволны длиной в 21 сантиметр. Эту идею подробно разработал и теоретически обосновал советский астроном профессор И. С. Шкловский.
Для опытной ее проверки в различных странах были построены специальные радиотелескопы. И теоретическое предвидение блистательно подтвердилось: весной и летом 1951 года радиоизлучение водорода именно на этой волне обнаружили сразу три наблюдательные станции на различных континентах! Молодая наука сразу зарекомендовала себя самым убедительным образом.
Радиоизлучение на волне в 21 сантиметр особенно интересно для астрономов, потому что водород служит главным «горючим» для Солнца и других звезд. Из атомов водорода в основном состоит межзвездный газ, заполняющий космические просторы.
А по изменениям в силе излучения астрономы теперь могут установить не только степень концентрации этого газа в разных точках вселенной и его температуру, но и выяснить, куда именно и с какой скоростью движутся газовые облака, невидимые в обычные телескопы. Эти измерения основаны на так называемом эффекте Допплера: частота сигналов меняется в зависимости от того, куда движется их источник, — от наблюдателя или навстречу ему.
Цель — далекие звезды. У пульта настройки сверхмощного телескопа.
Самая дальнозоркая
Радиоастрономия сразу раздвинула границы мира, доступного наблюдениям, в четыре-пять раз. Современные антенны улавливают сигналы, источники которых отдалены от нас на чудовищные расстояния в шесть миллиардов световых лет!
Вместо оптической «щелочки» в несколько десятков микрон радиоастрономия распахнула перед учеными широкое окно в космос. Она не только сделала видимым невидимое, как, например, межзвездный газ. Она позволяет «видеть» сквозь облака межзвездной пыли звезды и туманности, о существовании которых астрономы раньше и не подозревали. Именно радиоастрономия позволила за последние годы по волне водорода в 21 сантиметр подтвердить гипотезу о спиральном строении нашей Галактики, обнаружить многочисленные ее ответвления и «рукава» и нанести их на карту.
В прошлом году советским и американским радиоастрономам впервые удалось обнаружить звездное образование точно в самом геометрическом центре нашей Галактики.
Карта Галактики, пожалуй, самая необычная, какую только можно себе представить. Ведь она показывает одновременно положение различных частей Галактики не только в пространстве, но и во времени. Солнце, Земля и Луна на такой карте отмечены именно там, где они находятся сейчас. А, скажем, самый центр Галактики — в том положении, какое он занимал 26 тысяч лет назад: такое расстояние, выраженное в световых годах, отделяет его от нас.
Наблюдая на волнах различной длины излучение одного и того же объекта, астрономы могут увидеть интересующие их явления «протяженными в пространстве» и даже как бы заглянуть внутрь некоторых небесных тел.
Давно изучают астрономы пятна и вспышки на Солнце, остающиеся во многом еще загадочными для них. В обычные телескопы при этом удается наблюдать лишь самые верхние слои фотосферы Солнца, в лучшем случае — отдельные взметнувшиеся протуберанцы.
А наблюдения с помощью радиотелескопов позволили сделать как бы разрез солнечного пятна или вспышки по слоям различной высоты. Такие наблюдения ведутся в Пулкове даже тогда, когда Солнце закрыто облаками: ведь для радиоволн они проницаемы.
Только радиоастрономия позволила нам впервые заглянуть сквозь облачный покров Венеры, определить период вращения планеты и даже попытаться измерить по силе излучения температуру на ее поверхности.
Новейшие наблюдения за Луной принесли совершенно неожиданные данные о том, что с глубиной лунной «почвы» температура ее как будто повышается. Поскольку эти данные опровергают теорию о том, что наша спутница — мертвое, давно остывшее тело, и имеют громадное значение для космогонии, сейчас проводится их уточнение.
Так молодая наука опровергает некоторые старые, устоявшиеся взгляды. Она начинает кое в чем спорить со своей старшей сестрой, обладающей уже многовековым опытом и большим запасом наблюдений. Устранение противоречий между данными обычной, «оптической» астрономии и новейшими наблюдениями путем радиометодов становится сейчас очень важной задачей для науки.
Да, радиоастрономия распахнула окно в космос, но... Но многое при этом видно еще расплывчато, туманно, не так отчетливо и ясно, как в прежнюю «щелочку». Вся беда — в слабой разрешающей способности радиотелескопов. Они не могут пока различать отдельные детали так же отчетливо, как обычные телескопы. В простой, даже не слишком сильный телескоп можно отчетливо разглядеть все кратеры на Луне. А для радиотелескопа вся Луна — просто-напросто «звучащая точка». Определить, из какого именно места на лунном диске исходят радиоволны, пока не удается.
Довольно скромный по современным масштабам телескоп-рефрактор с диаметром в 20 сантиметров имеет разрешающую способность около одной десятой угловой секунды. Под таким углом виден с расстояния в 300 метров человеческий волос. А разрешающая способность самых совершенных современных радиотелескопов не превышает 10 секунд.
Самая загадочная
Чтобы как следует разобраться в каждом источнике радиоизлучения, надо прежде всего попытаться «привязать» его, как говорят астрономы и геодезисты, к какому-нибудь объекту, уже изученному прежними методами. К настоящему времени на небосводе обнаружено и нанесено на карты уже несколько тысяч мощных источников радиоволн. А «привязано» из них к знакомым объектам всего-навсего несколько десятков. Поэтому молодая наука остается до сих пор самой загадочной областью астрономии.
Еще в 1946 году был обнаружен какой-то весьма мощный источник радиоизлучения на волне 4,7 метра в созвездии Лебедя. По своим угловым размерам он оказался очень мал. Потом подобные же источники стали обнаруживать в самых различных участках неба. Всех их отличала большая мощность излучения и в то же время весьма малые, прямо-таки «точечные» размеры.
Уникальный оптический телескоп установлен в Крымской астрофизической обсерватории. Диаметр его зеркала — 2,6 метра.
Ученые стали размышлять, что же это за небесные тела. Может быть, это какой-то особый вид звезд, которые излучают так мало видимого света, что его не улавливают наши обычные телескопы, но зато посылают в космос мощные потоки радиоволн? Исходя из такой гипотезы, загадочные «радиостанции» стали называть радиозвездами. Но чем больше изучали радиоастрономы эти таинственные невидимые звезды, тем сильнее сомневались в правильности гипотезы. Было совершенно непонятно, откуда же у радиозвезд берется столько энергии для такого мощного излучения.
С повышением разрешающей способности радиотелескопов и с появлением более «дальнозорких» обычных рефракторов многие радиозвезды были развенчаны. Некоторые из них удалось отождествить с газовыми туманностями или очень удаленными галактиками. Другие оказались просто долетевшими к нам с опозданием «радиоотзвуками» взрывов так называемых «сверхновых звезд».
Теперь термином «радиозвезды» астрономы почти не пользуются. Они предпочитают заменять его более осторожным — «точечные источники». Но загадочность многих явлений от этого не уменьшается: большинство этих «точечных источников» пока остается ни к чему не «привязанным».