Выбрать главу

Уменьшение орбиты приводит к катастрофическим для системы последствиям: нейтронная звезда попадает внутрь звезды-гиганта. Образуется так называемый объект Торна — Житков. Существование подобных объектов было предсказано в 1977 году Кипом Торном и Анной Житков, однако пока обнаружить их не удается. Окончательным итогом эволюции системы является одиночная черная дыра. И это при том, что по отдельности звезды исходной пары не могли бы породить такой компактный объект.

Если взять массу второй звезды поменьше, скажем, не девять, а две массы Солнца, оставив все прочие параметры без изменения, судьба системы сложится совсем по-другому. Слияния звезд в ней не произойдет. Вместо этого будет несколько стадий обмена веществом, появится яркий рентгеновский источник (и снова вторая звезда будет при этом перетекать на нейтронную звезду, образовавшуюся из первой), но финалом станет не черная дыра, а пара: нейтронная звезда — белый карлик. Можно еще чуть-чуть изменить параметры и снова получить заметные отличия в эволюции. Таким образом, существует огромное разнообразие тесных двойных систем.

Как «взвесить» сладкую парочку

Наблюдая скорости звезд в двойной системе и зная период обращения, можно определить их массы. Все вроде бы легко и просто. Но не тут-то было! Скорости измеряются по эффекту Доплера: когда звезда движется к нам, линии в ее спектре смещаются в синюю сторону, когда от нас — в красную. Иными словами, измеряется не полная скорость звезды, а только ее проекция на луч зрения. Например, если смотреть на систему перпендикулярно плоскости ее орбиты, скорости звезд вдоль луча зрения будут просто равны нулю. Если же на эту систему посмотреть с ребра, будут регистрироваться полные орбитальные скорости. Выходит, для определения реальных орбитальных скоростей нужно еще знать, под каким углом мы рассматриваем двойную систему. К сожалению, определить угол удается далеко не всегда. В таких случаях обычно указываются условные массы, вычисленные в предположении, что орбита наблюдается с ребра, но при этом астрономы всегда помнят, что с учетом угла наклона орбиты к лучу зрения массы почти наверняка окажутся больше. Например, если окажется, что наклон орбиты составляет 45 градусов, то условные массы надо увеличить в 2,8 раза. Точнее всего массы определяются в системах, где происходят взаимные затмения звезд. Размеры звезд малы по сравнению с орбитой, по которой они движутся, и поэтому затмения возможны только при очень малых углах, когда систему видно почти с ребра. В таких редких случаях, особенно когда определены скорости обеих звезд, можно делать точные оценки масс.

Эффективная аккреция

Из всех проявлений тесных звездных пар наиболее известны, пожалуй, рентгеновские двойные. Эта стадия наступает в жизни многих взаимодействующих двойных, когда одна из компонент системы, став нейтронной звездой или черной дырой, захватывает, или, как говорят астрономы, аккрецирует, вещество соседки. Если звезда-донор заполнила свою полость Роша, превратившись в гиганта, то реализуется режим дисковой аккреции, при этом возникают наиболее мощные источники. Из-за того что компоненты двойной системы обращаются вокруг общего центра масс, вещество не может прямо упасть с одной звезды на другую. Перетекая через внутреннюю точку Лагранжа, оно закручивается вокруг компактного объекта мощным аккреционным диском. Интересно, что если звезда-донор достаточно массивна, диск может образоваться даже и без заполнения ею своей полости Роша: с поверхности таких звезд может истекать довольно сильный звездный ветер, который частично перехватывается компактным объектом и подпитывает рентгеновский источник.

Аккреция — это на удивление эффективный процесс получения энергии. Если взять кирпич и бросить его на нейтронную звезду, то при ударе о поверхность выделится столько же энергии, сколько при взрыве мощной ядерной боеголовки. Однако чаще основное энерговыделение происходит в аккреционном диске. Вещество, вращаясь вокруг нейтронной звезды или черной дыры, за счет вязкости разогревается до миллионов градусов. Такой диск испускает в основном рентгеновские лучи, так как чем выше температура вещества, тем более энергичные кванты уносят энергию.