Выбрать главу

16 июля 1945 года состоялся первый испытательный взрыв плутониевой атомной бомбы на полигоне в Нью-Мексико (США). Спустя несколько недель американцы уничтожили японские города Хиросиму (6 августа) и Нагасаки (9 августа), сбросив на них урановую и плутониевую бомбы с взрывными эквивалентами 15 тыс. т тринитротолуола.

1 ноября 1952 года произведен взрыв специального устройства типа водородной бомбы под кодовым названием «Майк», представлявшего собой более чем 50-тонный куб высотой с 2-этажный дом и длиной ребра 7,5 м. Мощность взрыва, в результате которого был уничтожен остров на атолле Эниветок в Тихом океане, в 1 000 раз больше, чем у атомной бомбы, сброшенной на Хиросиму.

12 августа 1953 года произведено первое испытание транспортабельной термоядерной бомбы на Семипалатинском полигоне. Мощность заряда соответствовала примерно 30 «хиросимам».

27 июня 1954 года первая атомная электростанция с реактором АМ-1 (Атом Мирный) мощностью 5 МВт дала промышленный ток в подмосковном поселке Обнинске, на территории так называемой «Лаборатории В» (ныне Государственный научный центр РФ «Физико-энергетический институт»).

1954 год – в Институте атомной энергии был построен первый токамак. Данная ТОроидальная КАмера с МАгнитной Катушкой стала прототипом современных управляемых термоядерных реакторов.

30 октября 1961 года в Советском Союзе, на Новой Земле, была испытана самая мощная в мире водородная бомба с тротиловым эквивалентом 50 млн. т. Взрывная волна оказалась столь сильной, что выбила стекла в поселке Диксон, расположенном в 800 км от Новой Земли. Всего в мире к сегодняшнему дню взорвано более 2 000 ядерных и термоядерных зарядов, из них около 500 – в воздухе.

1991 год – впервые достигнута мощность термоядерной реакции в 1 МВт на современном токамаке – JET (Joint European Torus) в городе Абингдоне, недалеко от Оксфорда, в научном центре Culham lab. Сегодня на JET достигнут рубеж в 300 млн. градусов и 16 МВт мощности при секундной длительности импульса.

1998 год – закончен инженерный проект токамак-реактора ITER (International Thermonuclear Experimental Reactor). Работы проводились совместными усилиями четырех сторон: Европы, России, США и Японии – с целью создания первого экспериментального реактора, рассчитанного на достижение долговременного термоядерного горения смеси дейтерия с тритием.

2010—2015 годы – планируется завершить строительство токамак-реактора ITER с полной мощностью термоядерных реакций не менее 1 ГВт при времени непрерывного горения плазмы десятки минут. Происходить оно будет с участием Канады, но без США, вышедших из консорциума. Стоимость данного проекта оценивается в 5 млрд. долларов.

2030—2035 годы – планируется закончить строительство первого демонстрационного термоядерного реактора, способного производить электроэнергию.

Топливный цикл разрабатываемых термоядерных реакторов в точности повторяет последовательность ядерных реакций, происходящих при взрыве водородной бомбы. Взрывчатым веществом термоядерной бомбы является дейтерид лития-6 – соединение тяжелого изотопа водорода (дейтерия) и изотопа лития с массовым числом 6. Дейтерид лития-6 – твердое вещество, и это позволяет хранить «сконцентрированный» дейтерий при плюсовых температурах. Второй компонент соединения, литий-6, – это сырье для получения самого дефицитного изотопа водорода – трития. При облучении его нейтронами он распадается на необходимый для термоядерной реакции тритий и неиспользуемый гелий. В термоядерной бомбе нейтроны, необходимые для термоядерной реакции, «обеспечивает» взрыв атомного «капсуля», и тот же взрыв создает условия, необходимые для начала реакции термоядерного синтеза, – температуру до 100 миллионов градусов и давление в миллионы атмосфер.

Таким образом, термоядерный реактор будет сжигать дейтерий и литий, а в результате реакций будет образовываться инертный газ гелий.

Для работы необходимо очень небольшое количество лития и дейтерия. Например, реактор с электрической мощностью 1 ГВт сжигает около 100 кг дейтерия и 300 кг лития в год. Если предположить, что все термоядерные электростанции будут производить 10 трлн. кВт•ч электроэнергии в год, то есть столько же, сколько сегодня производят все электростанции земли, то потребление дейтерия и лития составят всего 1 500 и 4 500 тонн в год. При таком расходе содержащегося в воде дейтерия (0,015%) хватит на то, чтобы снабжать человечество энергией в течение многих миллионов лет. Но поскольку для производства трития необходим литий, энергетические ресурсы такого типа реакторов ограничены запасами лития. Разведанные рудные запасы лития составляют 10 млн. тонн, и этих запасов должно хватить на многие сотни лет. Кроме того, литий содержится в морской воде в концентрации менее 0,0000002% и количестве, превышающем в тысячи раз разведанные запасы.