Ее «первому галанту» двоюродный брат Борис Алексеевич — сподвижник Петра, вымолил жизнь, и Василий Голицын отделался ссылкой в Каргополь, а три года спустя его отправили в еще более отдаленные места — в архангельское село Кологоры.
Голицын пережил Софью на 10 лет и умер в 1714 году в возрасте 71 года. Судьба сосланной вместе с ним семьи сложилась трагически. Не вынеся тягот ссылки, старший сын Алексей с годами впал в тихое помешательство, да и внука Голицына, Михаила, также ожидала незавидная участь — в 40 лет он был произведен в придворные шуты императрицей Анной Иоанновной. Это для его «шуточной» свадьбы с карлицей Евдокией Бужениновой был построен знаменитый «Ледяной дом».
Софья же была обречена на пожизненное пребывание в монастырских стенах. После подавления неудавшегося стрелецкого бунта бывшая правительница по приказу Петра была пострижена в монахини под именем Сусанны. Незадолго до смерти она приняла схиму и вернула себе имя Софья. Скончалась царевна 4 июля 1704 года в возрасте 47 лет, обретя вечный покой в Смоленском соборе Новодевичьего монастыря.
Людмила Третьякова
Планетарий: Вспышка
Одним из важных достижений XX столетия стало понимание того факта, что почти все элементы, которые тяжелее водорода и гелия, образуются во внутренних частях звезд и поступают в межзвездную среду в результате взрыва сверхновых — одного из наиболее мощных явлений во Вселенной.
На фото: Сверкающие звезды и клочья газа создают захватывающий дух фон для картины саморазрушения массивной звезды, названной сверхновой 1987A. Ее взрыв астрономы наблюдали в Южном полушарии 23 февраля 1987 года. Это изображение, полученное телескопом «Хаббл», показывает остатки сверхновой, окруженные внутренним и внешним кольцами вещества в диффузных облаках газа. Этот трехцветный снимок составлен из нескольких фотографий сверхновой и соседней с ней области, которые были сделаны в сентябре 1994, феврале 1996 и июле 1997 года. Многочисленнные яркие голубые звезды вблизи сверхновой — это массивные звезды, каждая из которых возрастом около 12 млн. лет и в 6 раз тяжелее Солнца. Все они относятся к тому же поколению звезд, что и взорвавшаяся. Присутствие ярких газовых облаков — еще один признак молодости этой области, которая все еще являетя плодородной почвой для рождения новых звезд.
Первоначально все звезды, блеск которых внезапно увеличивался более чем в 1 000 раз, называли новыми. Вспыхивая, такие звезды неожиданно появлялись на небе, нарушая привычную конфигурацию созвездия, и увеличивали свой блеск в максимуме, в несколько тысяч раз, затем их блеск начинал резко падать, а через несколько лет они становились такими же слабыми, какими были до вспышки. Повторяемость вспышек, при каждой из которых звезда с большой скоростью выбрасывает до одной тысячной своей массы, является для новых звезд характерной. И все же при всей грандиозности явления подобной вспышки оно не бывает связано ни с коренным изменением структуры звезды, ни с ее разрушением.
За пять тысяч лет сохранились сведения о более чем 200 ярких вспышках звезд, если ограничиться такими, которые не превышали по блеску 3-ю звездную величину. Но когда была установлена внегалактическая природа туманностей, стало ясно, что вспыхивающие в них новые звезды по своим характеристикам превосходят обычные новые, так как их светимость часто оказывалась равной светимости всей галактики, в которой они вспыхивали. Необычайность таких явлений привела астрономов к мысли, что такие события — нечто совсем не похожее на обычные новые звезды, а потому в 1934 году по предложению американских астрономов Фрица Цвикки и Вальтера Бааде те звезды, вспышки которых в максимуме блеска достигают светимостей нормальных галактик, были выделены в отдельный, самый яркий по светимости и редкий класс сверхновых звезд.
В отличие от вспышек обыкновенных новых звезд вспышки сверхновых в современном состоянии нашей Галактики — явление крайне редкое, происходящее не чаще чем раз в 100 лет. Наиболее яркими были вспышки в 1006 и 1054 годах, сведения о них содержатся в китайских и японских трактатах. В 1572 году вспышку такой звезды в созвездии Кассиопеи наблюдал выдающийся астроном Тихо Браге, последним же, кто следил за явлением сверхновой в созвездии Змееносца в 1604 году, был Иоганн Кеплер. За четыре столетия «телескопической» эры в астрономии подобных вспышек в нашей Галактике не наблюдалось. Положение Солнечной системы в ней таково, что нам оптически доступны наблюдения вспышек сверхновых примерно в половине объема, а в остальной ее части яркость вспышек приглушена межзвездным поглощением. В.И. Красовский и И.С. Шкловский подсчитали, что вспышки сверхновых звезд в нашей Галактике происходят в среднем раз в 100 лет. В других галактиках эти процессы происходят примерно с той же частотой, поэтому основные сведения о сверхновых в стадии оптической вспышки были получены по наблюдениям за ними в других галактиках.
Понимая важность изучения столь мощных явлений, астрономы В. Бааде и Ф. Цвикки, работавшие на Паломарской обсерватории в США, в 1936 году начали планомерный систематический поиск сверхновых. В их распоряжении был телескоп системы Шмидта, позволявший фотографировать области в несколько десятков квадратных градусов и дававший очень четкие изображения даже слабых звезд и галактик. За три года в разных галактиках ими были обнаружены 12 вспышек сверхновых, которые затем исследовались с помощью фотометрии и спектроскопии. По мере совершенствования наблюдательной техники количество вновь обнаруженных сверхновых неуклонно возрастало, а последующее внедрение автоматизированного поиска привело к лавинообразному росту числа открытий (более 100 сверхновых в год при общем количестве — 1 500). В последние годы на крупных телескопах был начат также поиск очень далеких и слабых сверхновых, так как их исследования могут дать ответы на многие вопросы о строении и судьбе всей Вселенной. За одну ночь наблюдений на таких телескопах можно открыть более 10 далеких сверхновых.
В результате взрыва звезды, который наблюдается как явление сверхновой, вокруг нее образуется туманность, расширяющаяся с огромной скоростью (порядка 10000 км/с). Большая скорость расширения — главный признак, по которому остатки вспышек сверхновых отличают от других туманностей. В остатках сверхновых все говорит о взрыве огромной мощности, разметавшем наружные слои звезды и сообщившем отдельным кускам выброшенной оболочки огромные скорости.
Ни один космический объект не дал астрономам столько ценнейшей информации, как относительно небольшая Крабовидная туманность, наблюдаемая в созвездии Тельца и состоящая из газового диффузного вещества, разлетающегося с большой скоростью. Эта туманность, являющаяся остатком сверхновой, наблюдавшейся в 1054 году, стала первым галактическим объектом, с которым был отождествлен источник радиоизлучения. Оказалось, что характер радиоизлучения ничего общего с тепловым не имеет: его интенсивность систематически возрастает с длиной волны. Вскоре удалось объяснить и природу этого явления. В остатке сверхновой должно быть сильное магнитное поле, которое удерживает созданные ею космические лучи (электроны, позитроны, атомные ядра), имеющие скорости, близкие к скорости света. В магнитном поле они излучают электромагнитную энергию узким пучком в направлении движения. Обнаружение нетеплового радиоизлучения у Крабовидной туманности подтолкнуло астрономов к поиску остатков сверхновых именно по этому признаку.
Особенно мощным источником радиоизлучения оказалась туманность, находящаяся в созвездии Кассиопеи, — на метровых волнах поток радиоизлучения от нее в 10 раз превышает поток от Крабовидной туманности, хотя она и значительно дальше последней. В оптических же лучах эта быстро расширяющаяся туманность очень слаба. Полагают, что туманность в Кассиопее — это остаток вспышки сверхновой, имевшей место около 300 лет назад.