Выбрать главу

Кроме того, нейтронное облучение снижает прочность конструкционных материалов. Энергичные нейтроны выбивают атомы из кристаллической решетки и образуют в твердом теле множество микроскопических каналов. Материал становится рыхлым. Прочность его резко падает. Так что стенки реактора, подверженные облучению нейтронами, придется периодически заменять. Делать это должны специально сконструированные роботы.

Избавиться от нейтронов и связанных с ними проблем позволяют другие термоядерные реакции. Например, если вместо трития использовать легкий изотоп гелия (3He) то ни среди исходных веществ, ни среди продуктов реакции не будет ничего радиоактивного:

D + 3He −> 4He + H.

Правда, небольшое число нейтронов будет все-таки рождаться при взаимодействии между ядрами дейтерия. Возможно, в будущем именно эта реакция станет

основой термоядерной энергетики. Но для нее нужна почти в 10 раз более высокая температура, которой пока еще никто не достиг. К тому же гелия-3 на Земле практически нет — считанные килограммы в год выделяются из природного газа некоторых месторождений. Добывать его можно на Луне, куда он попадает в составе солнечного ветра и накапливается в верхних слоях грунта. Завоз на Луну горнодобывающей техники, строительство поселка для рабочих, производство ракет для доставки гелия на Землю — все это окупается стоимостью электроэнергии! Так что проект вполне реалистичен. Но первый реактор и первые термоядерные электростанции будут все-таки использовать реакцию дейтерия с тритием.

Ну и в совсем уж далекой перспективе можно думать об использовании идеально чистой реакции бора с водородом:

11B + 1Н−> 3 4He.

Но для этого нужно уметь получать еще более высокую температуру.

Первая попытка

В 1951 году Сталин подписал постановление о начале работ по созданию термоядерной электростанции. Тогда казалось, что не так уж сложно заставить термоядерную реакцию, уже реализованную в водородной бомбе, протекать с гораздо меньшей скоростью. На это было отпущено всего два года, и назначена премия за успешный запуск термоядерного реактора. За короткое время были построены установки, в которых в газообразном дейтерии токами в сотни тысяч и миллионы ампер возбуждался разряд и получался очень похожий на молнию ярко светящийся шнур. Магнитное поле электрического тока сжимало шнур в тонкую нить, и по замыслу экспериментаторов в момент наибольшего сжатия могла получиться температура, необходимая для начала термоядерной реакции. Поэтому рядом с разрядом установили нейтронные счетчики, которые должны были зафиксировать этот момент. И они зафиксировали! Казалось, путь к термоядерной энергии открыт. А потом наступило разочарование. Выяснилось, что температура не доходит и до одного миллиона градусов, а наличие нейтронов вызвано побочными эффектами, не связанными с термоядерными реакциями. Результатом этих первых экспериментов стало осознание всей сложности проблемы управляемого термоядерного синтеза и истинного объема работы, которую предстояло сделать.

Взрывная камера создаваемой в России установки инерционного термоядерного синтеза «ИСКРА-6». Со всех сторон в камеру будет вводиться 128 лучей, генерируемых фиолетовым лазером на стекле с неодимом. Импульс длительностью 3 нс будет нести энергию 300 кДж, длина волны лазера — 350 нм. На сегодня уже построены и используются в экспериментах четыре лазерных канала (установка «Луч») с энергией в импульсе 12 кДж.  Фото: SPL/EAST NEWS

Горение или взрыв?

Из трех ключевых параметров термоядерного синтеза — температуры, плотности и времени удержания плазмы — один, температура, фактически задается выбранной реакцией. А вот соотношение двух других можно варьировать. Соответственно есть два основных пути: либо выбрать относительно низкую плотность топлива и продолжительное время удержания, либо, наоборот, максимально возможную плотность при очень небольшой продолжительности реакции.

На первом пути наибольших успехов удалось добиться, изолируя горячую плазму от контакта с холодными стенками реактора с помощью магнитного поля. Это технология магнитного удержания. Она основана на способности магнитного поля оказывать давление на плазму и снижать ее теплопроводность. Современные сверхпроводящие электромагниты могут поддерживать в большом объеме магнитное поле напряженностью 5—6 тесла, создающее давление около 100 атмосфер. Опыт показывает, что для надежного удержания давление плазмы не должно превышать нескольких процентов от этой величины. При температуре в 100 миллионов градусов это соответствует концентрации около 1020 частиц на кубометр. Это примерно в 200 000 раз меньше плотности воздуха — по существу высокий вакуум. Для получения положительного выхода энергии такую плазму нужно удерживать несколько секунд. В проекте строящегося сейчас первого термоядерного реактора ИТЭР заложены как раз такие параметры: давление магнитного поля 120 атмосфер, давление плазмы — около 3 атмосфер, время удержания — 3—4 секунды. За это время, характеризующее скорость потери частиц и тепла, прореагирует большая часть содержащегося в камере топлива. Если непрерывно компенсировать эти потери и одновременно удалять продукт реакции — гелий, разряд можно поддерживать значительно дольше. В ИТЭР поначалу он будет длиться несколько минут, а позднее его попробуют приблизить к часу.