Однако с точки зрения межзвездных и межвременных путешествий нужны кротовые норы совсем иных размеров: «хотелось» бы, чтобы через горловину без повреждений проходил разумных размеров космический корабль или хотя бы танк (без него среди тиранозавров будет неуютно, не правда ли?). Поэтому для начала нужно получить решения уравнений гравитации в виде проходимых кротовых нор макроскопических размеров. И если предположить, что такая нора уже появилась, а остальное пространство-время осталось почти плоским, то, считайте, есть все – нора может быть и машиной времени, и межгалактическим тоннелем, и даже ускорителем. Независимо от того, где и когда находится одно из устьев кротовой норы, второе может оказаться в любом месте в пространстве и когда угодно – в прошлом или в будущем. К тому же устье может двигаться с любой скоростью (в пределах световой) по отношению к окружающим телам – это не помешает выходу из норы в (практически) плоское пространство Минковского. Оно, как известно, необычайно симметрично и выглядит одинаково во всех своих точках, во всех направлениях и в любых инерциальных системах, с какими бы скоростями они ни двигались.
Но, с другой стороны, допустив существование машины времени, мы немедленно сталкиваемся со всем «букетом» парадоксов типа – полетел в прошлое и «убил дедушку лопатой» раньше, чем дедушка мог бы стать отцом. Нормальный здравый смысл подсказывает, что такого, скорее всего, быть просто не может. И если физическая теория претендует на описание реальности, она должна содержать механизм, запрещающий образование подобных «временных петель», или, по меньшей мере, до крайности затруднять их образование.
ОТО, вне всякого сомнения, претендует на описание реальности. В ней найдено немало решений, описывающих пространства с замкнутыми временными петлями, но они, как правило, по тем или иным причинам признаются либо нереалистическими, либо, скажем так, «неопасными».
Так, весьма интересное решение уравнений Эйнштейна указал австрийский математик К. Гедель: это однородная стационарная вселенная, вращающаяся как целое. Она содержит замкнутые траектории, путешествуя по которым можно вернуться не только в исходную точку пространства, но и в исходный момент времени. Однако расчет показывает, что минимальная временная протяженность такой петли много больше времени существования Вселенной.
Проходимые кротовые норы, рассматриваемые как «мосты» между разными вселенными, временных (как мы уже говорили) предположить, что оба устья выходят в одну и ту же вселенную, как петли возникают немедленно. Что же тогда с точки зрения ОТО мешает их образованию – по крайней мере, в макроскопических и космических масштабах?
Ответ простой: структура уравнений Эйнштейна. В их левой части стоят величины, характеризующие пространственно-временную геометрию, а в правой – так называемый тензор энергии-импульса, в котором сосредоточены сведения о плотности энергии вещества и различных полей, об их давлении в разных направлениях, об их распределении в пространстве и о состоянии движения. Можно «читать» уравнения Эйнштейна справа налево, заявляя, что с их помощью материя «говорит» пространству, как ему искривляться. Но можно и – слева направо, тогда интерпретация будет иной: геометрия диктует свойства материи, которая могла бы обеспечить ее, геометрии, существование.
Так вот, если нам нужна геометрия кротовой норы – подставим ее в уравнения Эйнштейна, проанализируем и выясним, какая же требуется материя. Оказывается, весьма странная и невиданная, ее так и называют – «экзотическая материя». Так, для создания самой простой кротовой норы (сферически-симметричной) необходимо, чтобы плотность энергии и давление в радиальном направлении в сумме давали отрица-тельную величину. Надо ли говорить, что для обычных видов вещества (как и многих известных физических полей) обе эти величины положительны?..