Выбрать главу

Нейтрино естественного происхождения имеют три принципиально разных источника. Первый из них – это реликтовые нейтрино, оставшиеся от Большого Взрыва. Согласно модели горячей Вселенной в настоящее время их температура близка к абсолютному нулю (около 2К). Хотя в среднем в 1 см3 пространства содержится от 300 до 400 реликтовых нейтрино всех трех типов. Однако практического метода для регистрации этих реликтовых нейтрино пока нет. Вторым источником нейтрино служат ядерные реакции, идущие в ядрах звезд. Солнце производит порядка 2•1038 нейтрино каждую секунду, а сверхновые звезды могут испустить в тысячу раз больше нейтрино, чем наше Солнце произведет за 10 миллиардов лет его жизни. Третьим «поставщиком» высокоэнергетичных нейтрино являются космические лучи, пронизывающие Землю со всех сторон.

На сегодняшний момент большинство наших знаний о Вселенной получено из наблюдений фотонов. Фотоны обильно вырабатываются, стабильны и электрически нейтральны, их просто обнаружить в широкой области энергий, а их спектры несут детальную информацию о химических и физических свойствах источников. Но горячие плотные области в ядрах звезд, ядра активных галактик и других энергетичных астрофизических источников для фотонов непрозрачны.

Обнаружение космических источников нейтрино может пролить свет на физику экзотических астрономических объектов, таких как экстремально мощные активные ядра галактик или таинственные гамма-вспышки, и помочь сделать шаг вперед в понимании загадки темной материи. Одна из интереснейших и труднейших задач для физиков и астрономов – «поймать» нейтрино внеземного происхождения, и прежде всего измерить поток нейтрино от Солнца, что позволит подтвердить теоретические гипотезы о механизмах реакций, обеспечивающих его светимость. Солнце производит только электронные нейтрино, но они значительно различаются по своим энергиям. Согласно Стандартной Солнечной Модели солнечная светимость поддерживается главным образом за счет энергии, которая освобождается в результате цепочки реакций, приводящей к образованию гелия из четырех протонов (водородный цикл). Но иногда происходит побочная реакция превращения бериллия в бор, и в этом случае образуются нейтрино с более высокой энергией.

Трое из ядра

Антинейтрино, как и нейтрино, возникло чисто теоретически, но после эксперимента в рамках проекта «Полтергейст» получило полное право на существование. Нейтрино рождается во всех процессах, где рождается позитрон или поглощается электрон, а антинейтрино рождается при испускании электрона или поглощении позитрона.

Очень скоро выяснилось, что нейтрино появляется не только при бета-распаде.

В 1936 году в космических лучах были обнаружены частицы – мюоны, абсолютные двойники электрона во всем, кроме массы. Масса мюона в 206,8 раза больше массы электрона, и из-за этого он нестабилен и быстро распадается на электрон, нейтрино и антинейтрино. Таким образом, оказалось, что нейтрино появляется в компании с электроном или с мюоном. В первом случае говорят об электронном нейтрино, а во втором – о мюонном нейтрино.

Тождественны ли эти нейтрино, или все же это два типа частиц, можно было решить только экспериментально. Смысл эксперимента, идея которого принадлежала Бруно Понтекорво, состоял в следующем. Если оба нейтрино тождественны, то мюонные нейтрино и антинейтрино будут порождать как мюоны, так и электроны или позитроны, если же они различны, то следует ожидать появления только мюонов. В 1962 году в США на одном из ускорителей был проведен эксперимент, подтвердивший существование двух типов нейтрино и антинейтрино – электронных и мюонных.

В 1975 году группой во главе с Мартином Перлом в Стэнфорде (Stanford Linear Accelerator Center) была открыта тау-частица. Она имеет массу, в 3 500 раз большую, чем электрон, и ее распад показывал то же самое несоответствие энергии, которое привело Паули к предсказанию нейтрино. Это дало серьезные основания предполагать существование третьего сорта нейтрино, связанного с тау-частицей.

И наконец, в июле 2000 года участниками эксперимента по непосредственному наблюдению тау-нейтрино было объявлено о получении результатов, подтверждающих существование элементарной частицы, названной тау-нейтрино. Таким образом, исследования показали, что возможно существование трех видов нейтрино, представляющих собой полный набор частиц этого класса: электронный нейтрино, мюонный нейтрино и тау-нейтрино, причем каждый со своим антинейтрино. В ядерной физике эти три разновидности нейтрино называются ароматами.

Ловушки для неуловимых