Для нейтрино солнечного вещества как будто и не существует: они улетают с места возникновения по прямолинейной траектории, нигде и ничем не отклоняясь, многие из них достигают поверхности Земли. Не имеет значения, день стоит или ночь: днем нейтрино прилетают сверху, а ночью – снизу, свободно пронзая земной шар. К счастью, существуют изотопы, с помощью которых можно устроить для нейтрино хоть и небольшое, но заметное препятствие. Наиболее известным из них является хлор-37. В тех редких случаях, когда нейтрино сталкивается с ядром атома хлора, это ядро испускает электрон и возникает атомное ядро радиоактивного аргона, которое распадается через 35 дней. Используя эту реакцию, можно построить детектор для солнечных нейтрино, который, чтобы компенсировать редкость таких столкновений, должен иметь большие размеры и для защиты от фонового излучения находиться глубоко под землей.
Первый эксперимент по обнаружению солнечных нейтрино с использованием этого метода был начат Раймондом Дэвисом в 1967 году в золотой шахте в Homеstake (Южная Дакота, США). Большое количество контрольных экспериментов показало, что эффективность извлечения аргона из бака – около 100%. Если количество нейтрино правильно оценивается астрофизической моделью Солнца, то в контейнере каждый день в среднем один атом хлора должен превращаться в атом аргона под действием нейтрино. Если бы этот детектор обнаружил количество нейтрино, близкое к предсказанному теорией, то это стало бы подтверждением того факта, что Солнце нагревается за счет ядерных реакций превращения водорода в гелий.
К сожалению, эксперименты, проводившиеся в течение нескольких лет, показали, что одна такая реакция происходит в среднем раз в три дня. Из этого следовал вывод, что Солнце производит только треть ожидаемых нейтрино с высокими энергиями. Астрофизики проверяли модели, а Дэвис искал ошибки в эксперименте. Но несоответствие моделей и эксперимента не исчезло и в 1988 году за дело взялись японские ученые на своем подземном детекторе Kamiokande-II, который расположен на глубине 1 000 м в шахте Камиока в префектуре Gifu. Их эксперимент принципиально отличался от эксперимента Дэвиса. Японцы использовали рассеяние солнечных нейтрино на электронах обычной воды. В результате столкновения нейтрино с каким-либо атомом, входящим в состав воды, ядро атома отскакивало, а электрон из атомной оболочки вылетал с огромной скоростью, создавая в воде свечение темно-голубого цвета, называемое Черенковским излучением.
Такая методика позволяет регистрировать все типы нейтрино, но максимально она чувствительна к электронным нейтрино. Ее достоинство заключается в том, что можно определить достаточно точно, откуда прибыло нейтрино, так как вылетевший электрон сохраняет направление движения нейтрино. Для того чтобы поймать нейтрино, использовались 3 000 тонн чистейшей воды, помещенной в стальной цилиндрический резервуар. 1 000 фотоумножителей, размещенных на внутренней поверхности резервуара, фиксировали Черенковское излучение, свидетельствующее о появлении нейтрино. Но подобно экспериментам Homеstake, Kamiokande-II обнаруживал только очень редкие высокоэнергетичные нейтрино. За тысячу дней наблюдений японские ученые обнаружили только половину от ожидаемого потока таких нейтрино.
Необходимо же было еще обнаружить и низкоэнергетичные нейтрино, возникающие в результате чрезвычайно важных для Солнца реакций водородного цикла. Для этого можно было воспользоваться тем, что при воздействии низкоэнергетичных нейтрино на атом галлия образуется атом германия с периодом распада 11 дней. Однако галлий – редкий и очень дорогой металл, его мировая добыча невелика, а для получения надежных результатов детектор должен был бы содержать примерно 40 тонн этого элемента. Поэтому галлиевые детекторы появились значительно позднее.
Российско-Американский галлиевый эксперимент, получивший название SAGE, был проведен на Боксанской нейтринной обсерватории, расположенной на большой глубине в горах Кавказа в России. Почти 100 измерений потока солнечных нейтрино, проведенных в течение 1990—2000 годов, зафиксировали только половину потока нейтрино, который прогнозируется Стандартной Солнечной Моделью. Огромное число различных тестов, проведенных для проверки надежности эксперимента, указали на то, что расхождение между прогнозами солнечной модели и измерениями потока в SAGE не может быть результатом ошибок эксперимента.
Дефицит массы