Достигая Земли, мюонные нейтрино и антинейтрино в воде на большой глубине создают поток мюонов, которые при больших энергиях сохраняют направление генерирующих их нейтрино. Траектория мюонов высокой энергии выглядит в воде как светящийся жгут. Происходит это потому, что мюон на своем пути порождает ядерно-электромагнитные ливни, которые испускают в воде Черенковское излучение. Поэтому глубоководный нейтринный телескоп представляет собой просто пространственную решетку из фотоумножителей, регистрирующих свет от траектории мюонов. Длина пробегов мюонов высоких энергий в воде очень велика, что позволяет довольно точно определить направление на источник. Поэтому для создания огромных мюонных детекторов, которые могли бы зафиксировать высокоэнергетичные нейтрино, используют воды Мирового океана и глубоководные озера.
Результаты многолетних исследований показали, что Байкал – одно из наиболее подходящих мест на Земле для размещения глубоководных детекторов Черенковского излучения, и сейчас на Байкальской нейтринной станции уже несколько лет работает нейтринный телескоп NT-200. Установке его модулей предшествовала длительная работа по изучению свойств озера и созданию глубоководной аппаратуры. Зимой 1992 года на глубине 1 370 метров, на расстоянии около 4 км от берега был установлен несущий каркас телескопа, а в 1998 году Байкальский нейтринный телескоп стал одной из крупнейших в мире установок для исследования нейтрино высоких энергий.
Другим уникальным нейтринным телескопом является Антарктическая Мюонная и Нейтринная Детекторная сетка (AMANDA) – совместный проект США, Швеции, Германии. Еще один нейтринный телескоп – ANTARES – устанавливается в 40 км на юго-восток от Марселя в Средиземном море на глубине 2,4 км. Он будет обнаруживать следы нейтрино, которые приходят из наиболее бурных мест во Вселенной.
AMANDA и ANTARES помогут расшифровать тайны гамма-всплесков, которые идентифицируются как возможные источники самых высокоэнергетических космических лучей и займут важное место в многосторонней атаке на природу частиц темной материи, а также откроют возможность для изучения нейтринных осцилляций. Они помогут узнать, существуют ли во Вселенной скрытые ускорители, из которых вылетают только нейтрино.
Эксперимент HomestakeДетектор Homestake представляет собой большой контейнер объемом 380 000 л, заполненный 610 т жидкого перхлорэтилена. Этот контейнер помещен на глубину 1 480 м и дополнительно защищен толстым слоем воды. Такая защита позволяет исключить нежелательные побочные ядерные реакции. К сожалению, такой детектор не мог обнаруживать низкоэнергетичные нейтрино, так как они не способны превратить изотоп хлора в аргон и, следовательно, они не будут зарегистрированы данным телескопом. Под действием нейтрино с энергиями, большими, чем 0,86 МэВ, ядро хлора превращается в ядро радиоактивного аргона, возникавший аргон извлекался с помощью продувания через бак с 20 000 л газообразного гелия. Затем аргон вымораживался охлаждением до температуры 77 К и адсорбировался активированным углем. После этого атомы аргона регистрировались по их радиоактивному распаду с помощью пропорциональных счетчиков.
SuperkamiokandeSuperKamiokande, являющийся модернизацией Kamiokande-II, размещен в горах Японии на глубине 1 км под землей.
Его детектор – огромный резервуар (40х40 м) из нержавеющей стали, заполненный 50 000 т необычайно чистой воды, которая служит мишенью для нейтрино. На поверхности резервуара размещены 11 146 фотоумножителей (ФЭУ), регистрирующие появляющиеся импульсы голубого цвета, известные как Черенковское излучение, которые сообщают о столкновении нейтрино с молекулой воды (использует ту же методику обнаружения нейтрино, что и Kamiokande-II).
Внутренний детектор, используемый для физических исследований, окружен слоем обычной воды, который называется внешним детектором и также контролируется фотоумножителями, чтобы не допустить в основной детектор каких-либо нейтрино, произведенных в окружающей детектор породе.