Выбрать главу

Все эти обстоятельства и позволили создать простой настольный прибор, способный с помощью одного остро заточенного куска твердого тела определять атомарное строение поверхности другого, более или менее плоского образца.

Управление зондом

Используя туннельный ток как индикатор приближения к поверхности и нарисовав несколько вариантов ее профилей, можно сложить из рисунков трехмерную картину исследуемой поверхности. Получаемое в сканирующих микроскопах изображение очень похоже на телевизионное – та же строчная развертка и покадровый режим. Только вместо яркости на картинках рисуется третья координата – высота поверхности.

Для получения такого рода профилограмм надо заставить иглу двигаться на некотором фиксированном расстоянии над поверхностью. В реальных приборах система автоматического регулирования высоты острия ориентируется на величину туннельного тока. Зонд, как крылатая ракета, летит на фиксированной высоте над поверхностью, ловко огибая «холмы» и ныряя в «овраги». Вот только системы управления у ракеты и зонда немного разные. И если первая совершает свой полет, маневрируя рулями высоты и поворота, то второй перемещается по своей траектории с помощью пьезокерамического привода. Выбор пьезокерамики в качестве материала для систем позиционирования в сканирующих зондовых микроскопах был далеко не случаен. Этот материал, изменяющий свои геометрические размеры под действием электрического поля, идеально подходит для манипулирования атомами. Пьезокерамические трубки и многослойные элементы обеспечивают жесткий крепеж иглы и окно сканирования размером в несколько десятков микрон.

Пьезокерамика практически не греется в процессе работы, и это обстоятельство существенно облегчает задачу борьбы с температурными деформациями самого прибора. Перемещение зонда зависит от приложенного напряжения, поэтому, ориентируясь на величину напряжения, можно определить координаты той точки, в которой находится зонд. Таким образом, получают трехмерное изображение исследуемой поверхности.

Для повышения точности позиционирования зонда в современные приборы стали встраивать емкостные датчики перемещения, за счет чего при окне обзора 100х100 мкм они позволяют исследовать атомарные объекты размером менее 1 нм.

Что видят микроскопы

Туннельные микроскопы, как правило, работают в вакууме, поскольку только так можно получить атомарно чистые поверхности, не замусоренные адсорбированными газами. Исключением здесь является пиролитический графит. При отщеплении верхних слоев от этого монокристалла углерода открываются абсолютно гладкие кусочки его поверхности. Атомы на таких образцах можно различить и на воздухе, поскольку все ковалентные связи у пограничных атомов углерода заняты и они не могут химически соединиться с бомбардирующими их молекулами окружающих газов.

Понимание того, что же видят эти микроскопы, пришло не сразу. Некоторые специалисты полагали, что наблюдаемые картинки – не более чем артефакты или же результаты компьютерной обработки данных… Первое сообщение о наблюдении перегруппировки атомов на поверхности кристалла кремния было сделано в 1981 году Гердом Биннигом и Генрихом Рорером – будущими лауреатами Нобелевской премии. Получить подобные результаты на других поверхностях их коллегам удалось лишь через два года. А дальше начался не прерывающийся и сегодня бум в области сканирующей зондовой микроскопии.

Не остались в стороне и теоретики. Они достаточно быстро решили задачу о прохождении электронов через зазор между острием зонда и исследуемой поверхностью. Получаемые сегодня картинки в СЗМ интерпретируют как изображения электронной плотности свободных носителей заряда на поверхности металла. Сканирующий микроскоп, удерживая постоянную величину туннельного тока, рисует ту поверхность, на которой вероятность пребывания электронов постоянна, то есть, по сути, ту самую псифункцию, которую используют для описания поведения квантовых объектов.