Выбрать главу

Но эти электрические силы накладывают и определенные ограничения на жесткость зонда с иглой в СТМ. Мягкий зонд, используемый в классических АСМ, при прикладывании к нему электрического напряжения под действием этих сил мгновенно изгибается и врезается в поверхность. В этом состоит одна из принципиальных причин, затрудняющих совмещение в одном приборе с одним и тем же зондом туннельного и атомносилового режимов. Случайное внедрение иглы в образец приводит к его деформации и поломке иглы. Но нет худа без добра. Способность АСМ делать маленькие дырочки и рисовать тонкие черточки сегодня активно используют для изучения прочности и износоустойчивости композиционных и тонкопленочных материалов. Правда, далеко не любой из современных материалов можно проколоть и поцарапать, используя тонкие кантилеверы и обычные кремниевые иглы.

У сканирующих зондовых микроскопов существует достаточно много узких специализаций и конструкций, разработанных под конкретные задачи. Чудес не бывает, и совместить в одном приборе рекордные характеристики, полученные на уникальных образцах, невозможно. Однако попытки создания универсального прибора, позволяющего одновременно измерять форму и механические свойства поверхности, а также определять проводимость и локальную емкость в точке контакта иглы с образцом, не прекращаются. Уже существуют экземпляры атомносиловых микроскопов, умеющие все это делать и к тому же позволяющие измерять микротвердость алмазоподобных пленок и истираемость защитного покрытия из углеродных нанотрубок.

Для того чтобы решить столь обширный комплекс задач, приходится использовать токопроводящие алмазные иглы и пьезорезонансные зонды с жесткостью автомобильной пружины. Именно благодаря такой большой жесткости всей конструкции (более 10 000 Н/м) электрическое напряжение между иглой и образцом не мешает нормальной работе АСМ. С помощью таких приборов в режиме реального времени можно наблюдать окисление кремния после того, как его поцарапали алмазной иглой зонда.

Глаза боятся, а руки делают, и успехи сканирующей микроскопии как нельзя лучше доказывают эту древнюю истину. Былой пиетет перед атомами и тем, как они друг за друга цепляются, безвозвратно ушел в прошлое. Осознание возможности «на ощупь» исследовать вещество и определять его структуру кардинально изменило представления о технологических возможностях в мире атомов. Ведь без умения измерять и контролировать параметры материалов и конструкций на нанометровом масштабе не может быть и речи о том, чтобы что-то осмысленно создавать в области нанотехнологий, где каждый атом на счету.

Кирилл Гоголинский, кандидат технических наук

Владимир Решетов, кандидат физико-математических наук

Арсенал:

Автомат Калашникова – классика огня

«Холодная война», начавшаяся сразу по окончании Второй мировой, стимулировала быстрое перевооружение противостоящих сторон. Советскому Союзу в сложных условиях восстановления разрушенного хозяйства пришлось вести новые разработки практически по всем направлениям: ядерное и управляемое ракетное оружие, зенитные средства, бронетанковая и авиационная техника, оружие пехоты.

Создание новой системы пехотного вооружения входило в число приоритетных задач послевоенного времени. Главными направлениями стали – разработки высокоманевренных образцов автоматического индивидуального и коллективного оружия, сильных носимых противотанковых средств, повышение боевых свойств зенитных пулеметных установок.

Если самозарядный карабин и ручной пулемет под промежуточный патрон в целом оказались отработаны уже к концу войны, то с автоматом вопрос оказался сложнее. В 1946 году свои проекты автоматов представили Н.В. Рукавишников, А.А. Дементьев, Г.А. Коробов и молодой старший сержант М.Т. Калашников. Система Калашникова обратила на себя внимание, но нуждалась в существенной доработке и изменениях. В помощь Калашникову выделили ковровского конструктора А.А. Зайцева, позднее – В.И. Соловьева. Во время работ на Научно-испытательном полигоне минометного и стрелкового вооружения в Щурово большую помощь оказали офицеры полигона В.Ф. Лютый и А.А. Малимон, представитель ГАУ В.С. Дейкин.

На заключительный этап испытаний в январе 1947 года попали автоматы А.А. Булкина, А.А. Дементьева и М.Т. Калашникова. В опытном образце, представленном последним, уже определились основные черты знаменитой впоследствии «системы Калашникова». Вопреки мифу система АК не была заимствована у немецкого автомата МР.44 (см. «Вокруг света» № 11, 2004 г.). Автоматика и узел запирания несли следы влияния американской самозарядной винтовки «гаранд», ударно-спусковой механизм – чешской винтовки ZH-29, но все это сочеталось с оригинальными конструктивными решениями. Характерно, что автомат сразу разрабатывался в двух вариантах: с постоянным (для стрелковых и мотострелковых частей) и со складывающимся прикладом (для воздушно-десантных войск). Выбор образца был не прост. Все испытанные автоматы не соответствовали требованиям по кучности стрельбы очередями. Однако заказчик предпочел кучности снижение массы и размеров, уделив особое внимание надежности, живучести и простоте обращения. Образец Калашникова показал большую надежность и был вполне готов к массовому производству. В июне 1949 года на вооружение приняли АК – «автомат Калашникова образца 1947 г.» (из-за чего его именуют также АК-47). Его крупносерийное производство начал Ижевский машиностроительный завод («ИЖмаш»), где и обосновалась конструкторская группа Калашникова.