Видеопоследовательность, составленная из 1 200 снимков Юпитера, полученных «Кассини», позволяет судить о полярной погоде планеты-гиганта как о необычайно устойчивом явлении. «Кассини» вынужден был проводить фотосъемку в инфракрасном диапазоне для того, чтобы пробиться через верхний покров планеты и показать находящиеся под ним облака в черно-белом режиме. В видеопоследовательность длиной менее минуты были включены изображения, полученные за 70 дней.
Данные, записанные масс-спектрометром «Кассини» во время полета в окрестностях Юпитера, показывают, что в его окрестностях имеется огромное облако газа вулканического происхождения. Оно протянулось от Ио (самого близкого из четырех крупных спутников Юпитера) в сторону внешнего космоса на расстояние порядка 150 млн. км. Это плоды извержений многочисленных вулканов Ио.
Американский космический аппарат «Галилео» непосредственно предназначен для исследования атмосферы и магнитосферы Юпитера и детального фотографирования его спутников. Он был сконструирован из трех сегментов, которые помогли сконцентрировать внимание на перечисленных аспектах: атмосферном зонде, невращающемся секторе орбитального аппарата, несущего камеру, и других датчиках, вращающихся в трех плоскостях главной секции, которая включает инструменты, сконструированные для измерения полей и частиц, в тот момент, когда «Галилео» будет лететь прямо через них. Разделение на две части необходимо для магнитосферных экспериментов, во время которых нужно сделать измерения при быстром вращении, обеспечив в то же время стабильность и фиксированную ориентацию для камеры и других детекторов.
Научные инструменты, измеряющие поля и частицы, вместе с главной антенной, энергетическим обеспечением, силовыми модулями и компьютерами установлены во вращающейся секции. Это — магнитометры, инструменты для обнаружения низкоэнергетичных заряженных частиц, плазменный волновой детектор, улавливающий генерируемые частицами волны, детектор высокоэнергетичных частиц, детектор космической и юпитерианской пыли, счетчик тяжелых ионов, приборы, оценивающие потенциальный риск от заряженных частиц, через потоки которых пролетает космический аппарат. Невращающаяся секция содержит инструменты и другое оборудование, деятельность которого зависит от стабильности и фиксированной ориентации: приборы для получения спектральных изображений атмосферы и химического анализа поверхности лун, ультрафиолетовый спектрометр, фотополяриметр-радиометр для измерения поглощенной и излученной энергии. Система камер дает изображения спутников Юпитера с разрешением от 20 до 1000 раз лучшим, чем были получены с «Вояджеров».
В декабре 1995 года «Галилео» прибыл к Юпитеру, по команде с Земли от него отделился спускаемый зонд, проникший в атмосферу планеты на 156 км и функционировавший там 57 мин., в течение которых передавал данные. А орбитальный модуль «Галилео» стал искусственным спутником Юпитера и уже более 6 лет прилежно несет свою службу на юпитерианской орбите. За время своего полета «Галилео» получил огромное количество информации и открыл новый мощный пояс радиации на расстоянии примерно 50 000 км от верхних облаков Юпитера. Используя данные с зонда, погруженного в верхние облачные слои Юпитера, ученые обнаружили, что грозовые штормы его во много раз мощнее земных и что в юпитерианской атмосфере меньше воды, чем предполагалось ранее. Оказывается, на Юпитере имеются как сухие, так и влажные области и содержание воды в гигантской газовой планете изменяется почти так же, как меняется влажность и на Земле.
Помимо этого, «Галилео» впервые обнаружил над Юпитером необычное облако, состоящее из чистых аммиачных льдинок, и это притом, что атмосфера Юпитера содержит газообразный аммиак. Это ледяное облако было замечено недалеко от Большого Красного Пятна на инфракрасных фотографиях, сделанных еще во время первого витка «Галилео» вокруг Юпитера. Причем облако это, получившее название Turbulent Wake Anomaly, несмотря на сильные ветры, дующие в этом районе, имеет довольно стабильную структуру. Дальнейшие исследования с помощью спектрометра показали, что облако имеет очень высокую концентрацию частиц аммиачного льда, а его толщина составляет около 15 км.