В 1926 году француз Ив ле Приер погрузился в водолазном костюме весом 10 кг в плавательный бассейн, а спустя еще 7 лет он разработал аппарат со сжатым воздухом, который позволил водолазам быть совершенно независимыми от связи с поверхностью, иными словами, это был первый образец акваланга, продемонстрированного в парижском аквариуме «Трокадеро» в 1934 году.
И только в 1943 году тогда еще совсем молодой Жак Ив Кусто вместе с Эмилем Ганьяном усовершенствовал уже существующий регулятор давления, которым был снабжен скафандр образца того времени, и приступил к созданию современного акваланга. С его помощью передвигаться под водой стало много легче, если спускаться при этом на значительную глубину. Ныряльщик, снабженный аквалангом, в зависимости от глубины может находиться под водой от нескольких минут до часа и более. Хотя погружение в акваланге глубже чем на 40 метров сопряжено с известным риском, так как сжатый азот, содержащийся в его баллонах, может вызвать неадекватные реакции у ныряльщика.
Техническое развитие водолазного снаряжения привело к тому, что на определенных глубинах применяемый ранее для обеспечения дыхания в скафандрах сжатый воздух становился все более непригодным. Использование азота на больших глубинах показало, что этот газ уже на отметке 50 метров начинает оказывать на водолаза наркотическое действие, дезориентируя его. Именно поэтому для глубоководных погружений в дыхательных смесях азот заменяется на другие газы, например на водород или гелий.
Толчком к экспериментам и испытаниям в этой области послужил мировой нефтяной кризис, разразившийся в 70-х годах прошлого столетия. Именно тогда в связи с поисками новых нефтеносных источников начались активные глубоководные исследования, потребовавшие использования более совершенных дыхательных смесей, в частности широкое применение получили смеси Тримикс, состоящие из азота, кислорода и гелия. С их помощью стало возможно погружаться на все более внушительную глубину. Вообще же современные водолазы способны погружаться на глубину 500 м, которая в наши дни считается «рабочей».
Хранитель времени
Одной из самых лучших в мире коллекций жестких шлемов для водолазных костюмов по праву считается коллекция, собранная профессиональным водолазом французом Даниэлем Будо. Уникальность этого собрания заключается не только в том, что Будо является обладателем ценнейших и редчайших экземпляров, о которых многие музеи мира могут только мечтать, но и в том, что все экспонаты его коллекции готовы к практическому использованию. Для Будо собирательство — не самоцель, ему интересно не просто поставить очередную находку на полку или в шкаф — он, руководствуясь чувством глубокого уважения к своим предшественникам, сначала бережно реставрирует каждую из них, а затем совершает погружение с их помощью. И пусть экспонатов в его коллекции не так уж и много — всего около 50, многие из них имеют огромную историческую ценность, да и стоить могут целое состояние.
Так, например, он может похвастаться образцом первого автономного водолазного шлема Boutan, коих в мире осталось всего 2 экземпляра, а также шлемом для погружения со смесью газов. Будо и впредь намерен пополнять свое собрание, разыскивая по всему свету редкие экземпляры жестких шлемов.
Игорь Аникеев
Планетарий: Тайна старого замка
Гравитационные линзы, обнаруженные астрономами около 30 лет назад, — одно из самых удивительных явлений, существующих во вселенной. Они стали не только убедительнейшим доказательством истинности теории относительности эйнштейна, но и незаменимыми помощниками астрономов в поиске ответов на многие вопросы о структуре и эволюции вселенной.
Подобно миражам, которые путешественники встречают в пустынях, в космосе существуют свои миражи. Они возникают, когда свет от отдаленных объектов отклоняется, изгибается и даже усиливается гравитационным полем массивных объектов, таких как галактики, галактические скопления и черные дыры. Большая масса объекта способна создать эффект линзы. На изображении показано, как лучи света (обозначенные серыми стрелками), исходящие из отдаленной спиральной галактики, отклоняются, проходя мимо объекта с большой массой, например галактического скопления (шар, окруженный голубым сиянием, в центре изображения). Когда этот свет наконец достигает Земли, то создается впечатление, что он пришел с несколько иного направления (обозначенного красными стрелками). Форма обычной спиральной галактики при этом также изменилась. В данном случае галактическое скопление ведет себя как гигантское увеличительное стекло, или гравитационная линза, увеличивая и искажая изображение отдаленной галактики.