Выбрать главу

Первые исследования в гамма-диапазоне были проведены в 1962 году, когда ракета подняла детекторы в верхние слои атмосферы. Всего три минуты длились измерения, но и этого времени хватило, чтобы обнаружить совершенно новый необычный объект, который позднее идентифицировали как нейтронную звезду. В 1960-е годы, до начала регулярных исследований с помощью специальных рентгеновских обсерваторий «Ухуру» и «Эйнштейн», было открыто всего два источника рентгеновского и гамма-излучения – Крабовидная туманность и странная звезда Скорпион Х-1. В настоящее время детекторы гамма-излучения установлены на многих спутниках, которые, летая в безвоздушном пространстве, ведут непрерывный мониторинг дальнего космоса. Запуски двух новых рентгеновских обсерваторий – «Чандра» (Chandra), принадлежащей NASA, и «Ньютон» (XMM-Newton) Европейского Космического Агентства позволили получить качественно новую информацию об источниках рентгеновского излучения в космосе.

Рентгеновская и гамма-астрономия сегодня являются одним из важнейших инструментов в изучении космоса. Количество открытых источников жесткого электромагнитного излучения все время растет. Причем это не обычные спокойные звезды, которым для того, чтобы быть достаточно яркими в рентгеновском диапазоне, надо иметь температуру поверхности, равную многим миллионам градусов, а разные экзотические объекты, крайне удаленные от Земли. Большинство обнаруженных сегодня источников гамма-излучения имеют далеко не тепловую природу и связаны с разного рода нестационарными и взрывными процессами во Вселенной.

Самые яркие остатки сверхновых

Некоторые звезды заканчивают свое существование взрывом, после которого остаются плотный, слабо светящийся объект и расширяющееся горячее газовое облако, которое излучает фотоны самых разных энергий, включая рентгеновский диапазон. Наиболее изученная и знаменитая Крабовидная туманность вместе с оставшимся после взрыва пульсаром производит не только радиоволны и рентгеновское излучение, видимый, инфракрасный и ультрафиолетовый свет, но и гамма-кванты с энергией до 10 млн. гигаэлектронвольт. Причем основную долю излучения, от радио до рентгена, дают релятивистские электроны, кружащие в мощном магнитном поле пульсара и туманности. Данные, полученные обсерваторией «Чандра», настолько точны, что позволяют определять скорости различных частей даже очень удаленных туманностей, образовавшихся после взрыва сверхновых. Оказалось, например, что некоторые области остатка сверхновой E0102-72 в Малом Магеллановом Облаке движутся в нашу сторону, но волноваться не стоит – газ дойдет до нас через миллионы лет остывшим и разреженным.

Слабо светящийся объект, остающийся после взрыва, – это, как правило, нейтронная звезда или черная дыра. Вообще говоря, подобный объект обнаружить довольно трудно. Но астрономам уже давно известно, что звезды любят собираться парами, и таких двойных систем уже обнаружено множество. Если же одним из членов пары оказалась нейтронная звезда или черная дыра, то такая пара будет мощным источником рентгеновского и гамма-излучения. Аккреция (захват) вещества из нормальной соседней звезды выдает присутствие темного и слабоизлучающего объекта.

Обсерватория «Чандра» обнаружила в скоплении 47 Тукана неожиданно большое число таких экзотических звездных систем. Вообще «нормальные» звезды излучают в оптическом диапазоне. Чтобы излучение стало более жестким, нужны особые условия. Такие условия создаются в двойных звездах – системе из нормальной звезды и компактного объекта – белого карлика, нейтронной звезды или черной дыры. В этом случае частицы из нормальной звезды, захваченные ее соседом, движутся с колоссальным ускорением и излучают фотоны различных энергий. Если «захватчиком» является нейтронная звезда или белый карлик, то при ударе об их поверхность излучается дополнительная энергия. Кстати, у черной дыры видимая твердая поверхность отсутствует и, следовательно, не будет и дополнительного излучения. Это один из способов отличить черную дыру от нейтронной звезды.

В скоплении 47 Тукана оказалось немало двойных звезд, активно излучающих в рентгеновском диапазоне, что означает, что там много черных дыр или нейтронных звезд. Вместе с тем выяснилось, что в скоплении, похоже, нет большой центральной черной дыры. «Большой», точнее «сверхмассивной», черной дырой обычно называется та, масса которой не менее миллиона солнечных масс. Так что дыры с массой порядка тысячи солнечной вполне могут присутствовать в этом скоплении. О необычности нейтронных звезд и ассоциируемых с ними рентгеновских пульсарах, барстерах (от англ. «burst» – вспышка, взрыв), так же как и о магнетарах, рассказывалось в июльском номере нашего журнала, поэтому на этих объектах подробнее останавливаться мы не будем.

Самые загадочные гамма-вспышки