Выбрать главу

Позже, около 469 г., Цзу Чунчжи расширил этот расчет и показал, что

3,1415926 < π < 3,1415927.

Результат был записан и сохранился, а вот метод, изложенный, возможно, в его потерянной работе «Чжуй шу» – «Метод интерполяции», до нас не дошел. Вероятно, это было сделано путем продолжения расчетов Лю Хуэя, но заголовок трактата позволяет предположить, что речь шла, скорее, о получении более точного результата из пары приближений, одно из которых слишком мало, а другое – слишком велико. Подобные методы можно найти в математике и сегодня. Не так давно им учили в школах, чтобы использовать таблицы логарифмов. Цзу предложил две простые дроби, приближенно выражающие: это Архимедова дробь 22/7, равная π с точностью до двух знаков после запятой, и 355/113, равная π с точностью до десяти знаков. Первое значение и сегодня широко используется, второе тоже хорошо известно математикам.

* * *

Одна из реконструкций доказательства теоремы Пифагора, принадлежащего Лю Хуэю и восстановленного на базе текстовых указаний в его книге, представляет собой хитроумное и необычное рассечение. Собственно прямоугольный треугольник, о котором идет речь, показан на рисунке черным. Квадрат, построенный на одном из его катетов (светло-серый), рассечен надвое диагональю. Квадрат, построенный на другом катете, разрезан на пять частей: один маленький квадратик (темно-серый), пара симметрично расположенных треугольников (средне-серых) тех же формы и размера, что и первоначальный прямоугольный треугольник, и пара симметрично расположенных треугольников (белых), заполняющих оставшееся место. После этого все семь кусочков собираются воедино и образуют квадрат на гипотенузе.

Для доказательства этой теоремы могут быть использованы и другие рассечения, попроще.

Древнекитайские математики были нисколько не слабее своих греческих современников, и развитие китайской математики после периода Лю Хуэя видело множество открытий, опередивших появление тех же достижений в европейской математике. К примеру, оценки числа π, полученные Лю Хуэем и Цзу Чунчжи, европейцам удалось превзойти лишь 1000 лет спустя.

Джозеф проверяет, не могли ли некоторые идеи китайских математиков попасть с купцами и торговыми караванами в Индию и Аравию, а затем, возможно, даже в Европу. Если так, то позднейшие достижения, когда европейцы заново открывали математические законы, вполне возможно, не были совершенно независимыми. В Индии в VI в. были китайские дипломаты, и китайские переводы индийских математических и астрономических трактатов сделаны в VII в. Что же до Аравии, то пророк Мухаммед выпустил хадис – изречение с религиозным смыслом, – в котором говорилось: «Ищите знание, даже если до него далеко, как до Китая». В XIV в. арабские путешественники сообщали о прочных торговых связях с Китаем, а марокканский путешественник и ученый Мухаммад ибн Баттута написал о китайских научных и технических достижениях, а также о китайской культуре в книге «Рила» – «Путешествия».

Мы знаем, что идеи из Индии и Аравии проникали в средневековую Европу, о чем говорится в двух следующих главах. Поэтому вполне возможно, что в Европу проникали в какой-то мере и китайские знания. Присутствие иезуитов в Китае в XVII и XVIII вв. отчасти через Конфуция вдохновило философию Лейбница. Можно предположить, что существовала сложная сеть, посредством которой математика, физика и многое другое циркулировало между Грецией, Ближним Востоком, Индией и Китаем. Если это так, то традиционная история западной математики, возможно, нуждается в определенном пересмотре.

3. Dixit Algorismi. Мухаммад аль-Хорезми

После смерти пророка Мухаммеда в 632 г. власть над исламским миром перешла к сменявшим друг друга халифам. В принципе, халифов избирали за их достоинства, так что система правления в халифате не была в строгом смысле монархией. Однако халиф обладал всей полнотой власти. К 654 г., при третьем халифе Усмане, халифат стал крупнейшей в истории империей. Его территория (в терминах современной географии) включала Аравийский полуостров, Северную Африку от Египта через Ливию до восточной части Туниса, Левант, Кавказ и значительную часть Средней Азии, от Ирана через Пакистан и Афганистан до Туркмении.