Выбрать главу

Алгоритмы в современной жизни приобрели принципиальное значение, потому что компьютеры – это машины, исполняющие алгоритмы. Алгоритмы выкладывают в интернет смешные видео с котиками, рассчитывают ваш кредитный рейтинг, решают, какие книги можно попытаться продать вам, осуществляют миллиарды биржевых сделок с валютой и акциями каждую секунду и пытаются украсть у вас пароль от онлайн-банка. Как ни забавно, из всех работ аль-Хорезми подробнее всего об алгоритмах рассказывается не в трактате «Об индийском счете», хотя любой метод арифметического счета, естественно, представляет собой алгоритм. Больше всего алгоритмов в его алгебраической книге, которая вошла в историю тем, что в ней излагаются общие процедуры решения уравнений. Эти процедуры являются алгоритмами, и именно это делает их такими важными.

* * *

Аль-Хорезми писал не только о математике, но также о географии и астрономии. Его «Китаб сурад аль-ард» («Книга описания Земли») 833 г. дополняет предыдущий классический труд на эту тему – «Географию» Птолемея, написанную около 150 г. Это своего рода набор «сделай сам» для атласа известного на тот момент мира: контуры континентов на трех различных типах координатной решетки с указаниями, где на них следует поместить основные города и другие значительные детали. Кроме того, в книге обсуждаются базовые принципы составления карт. В труде аль-Хорезми список локаций расширен до 2402 объектов, а некоторые данные Птолемея были исправлены; в частности, аль-Хорезми снизил завышенную Птолемеем оценку длины Средиземного моря. Кроме того, если Птолемей показывал Атлантический и Индийский океаны как моря, окруженные со всех сторон сушей, то аль-Хорезми не стал их ограничивать.

Книга «Зидж аль-Синдхинд» («Астрономические таблицы Синдхинда»), датируемая примерно 820 г., содержит более сотни астрономических таблиц, взятых в основном из трудов индийских астрономов. Среди них имеются таблицы движения Солнца, Луны и пяти планет, а также таблицы тригонометрических функций. Считается, что аль-Хорезми писал также о сферической тригонометрии, очень важной для навигации. «Рисала фи истихрадж таких аль-яхуд» («Определение эры евреев и об их праздниках») рассказывает о еврейском календаре и анализирует Метонов цикл – 19-летний период, очень близкий к общему кратному солнечного года и лунного месяца. Вследствие этого солнечный и лунный календари, которые со временем постепенно расходятся, вновь почти выравниваются каждые 19 лет. Этот цикл назван в честь Метона Афинского, который описал его в 432 г. до н. э.

Наряду с достижениями математиков древнего Китая (глава 2) и Индии (глава 4) достижения аль-Хорезми служат дополнительным свидетельством того, что в Средние века, когда наука Европы в основном находилась в состоянии застоя, центр научной и математической деятельности переместился на Восток. Со временем, в эпоху Возрождения, Европа пробудилась вновь, как мы увидим в главе 5. Аль-Хорезми проложил новый путь, и математике уже не суждено было вернуться в прежнее состояние.

4. Новатор бесконечности. Мадхава из Сангамаграмы

«Вода урагана Рита весила, как 100 миллионов слонов». Сегодня СМИ часто используют слонов как меру веса, не говоря уже о Бельгии и Уэльсе как мерах площади, олимпийских плавательных бассейнах как мерах объема и лондонских автобусах для измерения длины или высоты. А что вы скажете о таком перечне:

Боги (33), глаза (2), слоны (8), змеи (8), огни (3), качества (3), веды (4), накшатры (27), слоны (8) и руки (2) – мудрые говорят, что такова мера длины окружности, когда диаметр ее равен 900 000 000 000.