Как легко можно предположить, подлинная история была, вероятно, куда более запутанной. Некоторое время спустя Лодовико Феррари, ставший позже учеником Кардано, заявил, что присутствовал на той памятной встрече и Кардано не давал согласия хранить метод Тартальи в секрете. С другой стороны, Феррари вряд ли можно считать беспристрастным наблюдателем. В ответ на заявление Тартальи о нарушенной клятве он выпустил так называемый cartello – вызов к Тарталье, приглашавший того к дебатам на любую избранную им тему. В августе 1548 г. в церкви, где должен был состояться диспут, собралась большая толпа зрителей. Сомневаюсь, что всех привлекла туда математика; сомневаюсь даже, что многие из зрителей в ней сколько-нибудь разбирались. Большинство привлекла туда жажда старого доброго зрелища, а то и скандала. Хотя никаких сведений о результате состязания до нас не дошло, Феррари вскоре был предложен пост наставника при сыне императора. Напротив, Тарталья никогда не говорил о своей победе; мало того, он потерял работу в Брешии и долго еще жаловался и ныл по поводу результата поединка. Так что мы можем сделать обоснованное предположение.
Ирония ситуации заключается в том, что весь этот спор не имел в общем-то никакого смысла. В ходе подготовки Ars Magna Кардано и Феррари видели болонские бумаги дель Ферро, содержавшие полученное им ранее решение кубических уравнений. Именно это решение, утверждали они, и является подлинным источником метода. Работу Тартальи Кардано упомянул только для того, чтобы объяснить, откуда он узнал о трудах дель Ферро. Вот и все.
Возможно, и так. Но тогда зачем Кардано умолял Тарталью раскрыть ему секрет решения, если уже знал его из более раннего источника? Может, и не умолял. В этом смысле у нас есть только слово самого Тартальи. С другой стороны, что-то же сдерживало Кардано некоторое время, поскольку само по себе решение кубических уравнений ему не было нужно. Феррари под руководством Кардано удалось пройти в этом вопросе на шаг дальше и решить уравнение четвертой степени (содержащее четвертую степень неизвестного, а также более низкие его степени). Но – и это принципиально – его решение работало через сведение всего к соответствующему кубическому уравнению. Так что Кардано не мог открыть миру метод решения уравнений четвертой степени, не рассказав заодно, как решать кубические уравнения.
Возможно, все обстояло именно так, как утверждали Кардано и Феррари. Победа Тартальи над Фиором привлекла внимание Кардано к кубическим уравнениям и дала понять, что решение таких уравнений существует. Затем активные поиски привели его к рукописи дель Ферро, в которой он нашел метод, нужный ему для книги. Вдохновленный открытием, Феррари одолел уравнения четвертой степени. Кардано поместил все это в свою книгу. Феррари, как его ученик, едва ли мог жаловаться на то, что его результаты были туда включены; судя по всему, он даже гордился этим. Из уважения к Тарталье Кардано сослался на него в книге и отдал ему должное за независимое открытие метода и привлечение к нему его, Кардано, внимания.
Книга «Великое искусство» важна еще по одной причине. Кардано применил свои алгебраические методы для нахождения двух чисел, сумма которых равна 10, а произведение 40, и получил ответ: Поскольку квадратные корни из отрицательных чисел не извлекаются, он заявил, что этот результат «столь же изящен, сколь бесполезен». Формула для кубических уравнений тоже может давать подобные промежуточные результаты, когда все три решения действительны, и в 1572 г. Рафаэль Бомбелли заметил, что если не обращать внимания на то, что могут означать подобные выражения, и просто просчитать все по формуле, то можно получить верные действительные решения. Со временем это направление мысли привело к созданию системы комплексных чисел, в которой –1 имеет квадратный корень. Без такого расширения системы действительных чисел сегодняшние математика, физика и инженерное дело были бы невозможны.