С.З. Хорошо, попробую поверить вам на слово. Но вот от следующего коварного вопроса вам не отвертеться. До сих пор вы говорили только о ядрах атомов. Но ведь согласно установившимся представлениям, эти ядра обычно имеют еще и электронные оболочки. Помню, например, какой наглядностью обладает рисунок атома водорода, впервые нарисованный еще Э. Резерфордом и дополненный затем Н. Бором. Вокруг планеты-ядра вращается по орбите спутник-электрон. Все просто и понятно. Зачем тут нужна ваша вихревая модель?
В.А. А хотя бы затем, что представления Бора, мягко говоря, не соответствуют действительности. Согласно представлениям, бытующим в современной физике, электрон хотя и представляют этакой точкой-спутником, но, по существу, он представляет собой некое размазанное образование, которое ученые называют «электронным облаком». Причем, согласно принципу неопределенности, можно говорить лишь о некой вероятности присутствия электронов в той или иной части электронного облака. Для практических расчетов такое представление не несет ничего хорошего: формулы и уравнения становятся столь громоздкими, что зачастую справиться с ними удается лишь с помощью ЭВМ. Да и то с определенной степенью точности.
В вихревой же модели роль электронной оболочки выполняет присоединенный к ядру винтовой тороидальный вихрь эфира, знак винтового движения которого противоположен знаку винтового движения эфира в пределах ядра.
Если в ядре не один протон, как в ядре водорода, а два, как в ядре гелия, то образуются два присоединенных вихря. Они находятся по соседству друг с другом, соприкасаются своими границами, взаимно уравновешены, но не пересекаются. Поскольку каждый из них теперь имеет вдвое меньший телесный угол, то и скорости эфирных потоков в них в 2 раза больше. Это значит, в соответствии с законом Бернулли, что давление в этих потоках упадет и внешнее давление эфира сожмет эти вихри. Объем системы уменьшится в 2 раза, что соответствует, кстати сказать, экспериментальным данным.
Если к ядру гелия присоединится еще один протон, то он расположится сбоку. Соответственно и присоединенный вихрь окажется несимметричным, вытянутым вбок. Оба уже имеющихся вихря подожмутся, их объем уменьшится, но третий вихрь увеличит общий объем. И лишь присоединение четвертого нуклона поставит все на свои места: общий объем опять уменьшится.
Таким вот образом могут быть построены все электронные оболочки элементов таблицы Менделеева.
Эфиродинамическое моделирование позволяет рассмотреть структуры и устойчивых элементарных частиц вещества, и ядер атомов, и самих атомов, и молекул. Что же касается неустойчивых элементарных частиц, таких, например, как мезоны, их можно рассматривать как остатки устойчивых систем. И вариантов таких «осколков» может быть сколько угодно. Некоторые из них будут более устойчивы, другие менее. Тем не менее все они являются переходными формами вихрей, которые будут распадаться до тех пор, пока винтовые потоки эфира, образующие эти частицы, не замкнутся сами на себя, не образуют наконец устойчивые формы вихрей, которые будут восприниматься как устойчивые микрочастицы — конечный продукт распада.
С.З. Но ведь, кроме, так сказать, геометрических форм, частицы микромира отличаются еще и определенными свойствами, скажем, магнитными и электрическими моментами. Каким образом их можно объяснить с точки зрения вихрей?
В.А. Тут тоже нет ничего особо заумного. Тороидальное движение эфира вокруг частицы может быть описано с помощью закона Био-Саварра, известного многим еще по курсу физики средней школы, так же как и понятие о магнитном поле. А кольцевое движение может быть описано законом Кулона.
Тороид — единственная форма движения газа, способная удержать газ в замкнутом пространстве. А это значит, что подобные формы должны быть широко распространены в эфире, ведь наш мир отличается достаточной степенью устойчивости. Но «подобное рождает подобное». Так можно сказать, перефразируя известное выражение Воланда из романа «Мастер и Маргарита». Система же замкнутых тороидальных вихрей, которые образуются от движения в эфире тороидального же кольца, и есть само по себе магнитное поле.
Электрическое поле будет представлять собой систему разомкнутых вихрей.
Если часть электронного облака отрывается от возбужденного атома, рождается фотон — система линейных вихрей, обладающая свойствами саморазгона. Причем по мере перемещения в пространстве вихри, составляющие фотон, теряют энергию и увеличиваются в размере примерно так же, как расплывается дымовое кольцо, выдуваемое курильщиком. Увеличение размера кольца наблюдатель воспринимает как увеличение длины волны.
С.З. Словом, как я вижу, у вас есть ответы на многие вопросы. Ну, а вот как быть с природой гравитации? Ведь теория эфира, вспомним, возникла как раз из попыток объяснить это явление природы.
В.А. И тут дело обстоит, на мой взгляд, достаточно просто. Как известно, любое вихревое образование имеет температуру ниже, чем окружающая его газовая сфера. И как бы вихри ни были ориентированы друг относительно друга в веществе, вместе они будут охлаждать окружающий эфир. Значит, в эфирном пространстве неизбежно возникает градиент температур, который, в свою очередь, приводит к градиенту давления. Говоря иначе, любое тело в эфире будет испытывать на себе разность давлений, которая начнет подталкивать его к источнику холода. Таким образом, для того, чтобы вывести уравнение тяготения, нужно за основу брать тепловые процессы в эфире и уравнение теплопроводности.
С.З. Не понимаю. Межпланетное пространство, как известно, холодное. Земля — теплее, а Солнце и вовсе горячее. Причем же здесь градиенты температур, подталкивающие к источнику холода?
В.А. Вы говорите о температуре вещества. А рассматривать нужно температуру эфира в свободном пространстве и температуру эфира в веществе. Что такое температура? Это кинетическая энергия одной молекулы. И хотя скорости амеров — частиц эфира — очень велики и многократно превышают скорость света, масса амера очень мала, и поэтому температура эфира и в пространстве, и в веществе, которое само состоит из эфира, получается низкой. Причем на поверхности ядер вещества она получается еще ниже, чем в свободном пространстве. Поэтому эфир, входящий в состав ядер, охлаждает окружающий эфир. В пространстве, окружающем вещество, возникает градиент температур, вследствие чего возникает градиент давлений и т. д.
С.З. И все эти процессы можно для наглядности как-то промоделировать?
В.А. Ну возьмем хотя бы такой пример. Представьте, на проводах висят вблизи друг от друга две электрические лампочки. Если их включить, то каждая лампочка будет обогревать окружающий воздух, причем в промежутке между лампочками воздух будет нагрет сильнее, поскольку обогревается с двух сторон. Давление воздуха здесь тоже возрастет, и лампочки станут несколько отклоняться друг от друга. А если повесить на нитях два куска льда, то все будет наоборот: тела станут притягиваться друг к другу.
Причем учтите: наша аналогия весьма приближенная. Если бы мы все-таки провели математические выкладки, то в результате получили бы ньютоновский закон притяжения. Причем первая часть уравнения оказалась бы умножена на интеграл Гаусса с переменным нижним пределом.
С.З. А что это значит?
В.А. А то, что притяжение небесных тел на расстояниях больших, чем планетарные, не подчиняется закону обратной пропорциональности от квадрата расстояния. И такое нарушение действительно отмечено на практике астрономами. Они, например, выяснили, что планета Плутон уже не точно следует Закону всемирного тяготения, а звезды, похоже, вообще не притягиваются друг другом.
Все это, повторяю, достаточно просто объясняется, если мы выводим закон притяжения из уравнения теплопроводности эфира. Согласно ему получается, что Солнце не может беспредельно притягивать к себе тела, а лишь до некоторого определенного расстояния. Таким образом получается, что орбита Плутона уже находится на перегибе функции этого закона, то есть окраинная планета балансирует на грани равновесия. И за Плутоном, пожалуй, никаких еще планет в Солнечной системе не должно быть, и звезды друг к другу притягиваться не должны.