Выбрать главу

Рис. 4-5. Гидравлическая система

Вы быстро поймёте что если вам надо вращать колесо быстрее, требуется увеличить размер труб (но это работает только до определённого предела) и увеличить давление насоса. Увеличение диаметра труб позволит пройти через них большему потоку воды; увеличивая трубу мы уменьшаем её сопротивление потоку. Это работает до определённого предела, при котором колесо не будет крутиться ещё быстрее, так как давление воды недостаточно велико. Когда мы достигнем этой точки, нам надо выбрать насос помощнее. Этот метод до тех пор, пока водяное колесо не сломается из-за слишком сильного напора воды. Другая вещь, которую вы можете заметить, это то, что ось колеса немного нагревается, поскольку незавимо от того насколько точно мы установили колесо, трение между осью и колесом будет создавать тепло. Важно понять что в подобной системе не вся энергия насоса будет превращена в движение колеса, некоторая часть будет потеряна из-за неэффективности системы и превратится в основном в тепло в некоторых её частях.

Итак, какие части системы важны? Давление, поизводимое насосом; сопротивление труб и колеса потоку воды, и, собственно, сам поток воды (определяемый литрами воды, которая вытекает за секунду) и другие. Электричество работает подобно воде. У вас есть что-то подобное насосу (любой источник электричества, такой как батарейка или розетка в стене), который толкает электрические заряды (представим их как "капельки" электричества) по трубам, которые мы можем представить как провода, и устройства, способные производить тепло (пример - термоодеяло), свет (лампа в вашей комнате), звук (ваша стереосистема), движение (вентилятор) и многое другое.

Теперь, если вы прочтёте на батерейке "9 В", думайте об этом как о давлении воды, которое может выдать наш "насос". Напряжение измеряется в вольтах - единицах названных в честь Александра Вольта, создателя первой батареи.

В точности как давление воды имеет эквивалент в электричестве, скорость потока воды также его имеет. Он называется током, который измеряется в амперах (по имени Андре Мари Ампера, первооткрывателя электромагнетизма). Связь между напряжением и током может быть показана если мы вернёмся к водяному колесу: если большее напряжение (давление) позволяет вам крутить колесо быстрее, то больший поток воды (ток) позволяет крутить большее колесо.

И, наконец, сопротивление, противостоящее течению электричества на его пути, через который ток проходит, называется - вы знали это! - сопротивлением, и измеряется в омах (по имени немецкого физика Георга Ома). Герр Ом также виновен в формулировке самого важного закона в электричестве, и вам надо запомнить только одну его формулу. Он смог показать, что напряжение, ток и сопротивление в цепи связаны друг с другом, и, в частности, что сопротивление цепи определяет количество тока, который будет течь через неё при определенном напряжении питания.

Это легко понять если вы задумаетесь. Возьмите батарейку на 9 вольт и включите её в простую схему. Измеряя ток, вы увидите что чем с большим сопротивлением резистор вы добавите в схему, тем меньший ток будет проходить через него.Возвращаясь к аналогии с водой, при данном насосе, если я установлю клапан (который соотносится с сопротивлением в электронике), то чем больше я буду закручивать этот клапан - увеличивая сопротивление потоку воды - тем меньше воды протечёт по трубе. Ом подвёл итог своего закона в формулу:

R (сопротивление) = V (напряжение) / I (ток)

V = R * I

I = V / R

Это единственное правило, который вам надо запомнить и выучить, поскольку в большинстве ваших работ оно единственное вам и понадобится.

4.10 Использование кнопки для управления светодиодом

Мигать светодиодом несложно, но я не думаю что вам понравится если настольная лампа будет бесконечно мигать тогда как вы пытаетесь читать книгу. Поэтому вам надо понять как управлять ею. В нашем предыдущем примере светодиод был актюатором и Arduino управляла им. Чего не хватает для полноты картины, так это сенсора.

В данном случае мы будем использовать простейший из доступных сенсоров - кнопку.

Если вы разберёте кнопку на части, вы увидите что это очень простое устройство: два кусочка металла, разделённые пружинкой, и пластиковый наконечник, который при нажатии соединяет эти контакты. Когда металлические части разделены, ток через кнопку не протекает (она подобна закрытому крану для воды); когда мы нажимаем её, мы осуществляем соединение.

Чтобы узнать состояние выключателя, существует новая для нас команда Arduino, которую нам следует изучить: функция digitalRead().

digitalRead() проверяет, подключено-ли напряжение к контакту, который вы указали в скобках, и возвращает значение "HIGH" или "LOW". Другие инструкции, которые мы использовали до этого, не возвращали никакой информации - они просто выполняли то что мы просили. Но такой тип функций немного ограничен, так как они заставляют нас придерживаться предсказуемой, строго определённой последовательности команд, без ввода данных из окружения. С функцией digitalRead() мы можем "задать вопрос" Arduino и получить ответ, который можно сохранить где-нибудь в памяти и принять решение немедленно или позже.

Составьте схему по рис. 4-6. Для этого у вас должны быть некоторые детали (и они потребуются в следующих проектах):

Беспаечная макетная плата. Приложение A - инструкция по применению такой платы.

Набор нарезанных проводов

Резистор на 10 кОм

Кнопка

Рис. 4-6. Подключение кнопки

Примечание: чтобы не покупать набор проводов, вы можете купить небольшую катушку провода 22 AWG (диаметр 0.65 мм), нарезать куски требуемой длины и зачистить концы самостоятельно.

Давайте рассмотрим код, который используется для управления светодиода кнопкой: