По их аргументации, при достаточно большом гравитационном давлении электроны сливаются с протонами и дают в результате нейтроны. Цвикки даже догадался, что необходимые «сверхдавления» могут возникать при взрыве сверхновых звезд. Теперь такие звезды известны, их называют пульсарами. А в те годы еще не был ясен механизм генерации энергии в звездах, поэтому одна из гипотез помешала нейтронную звезду в центр любой обычной звезды. (В наши дни, по абсолютно схожим соображениям, астрофизики полагают, что внутри каждого квазара сидит черная дыра, дающая энергию.) Истинный же источник энергетики звезд – термоядерные реакции слияния – был открыт Гансом Бете и Карлом фон Вайцзеккером как раз в 1938 году.
Оппенгеймер решил понять: какой будет аналог массового предела Чандрасекара для звезд такого типа? Ответить на этот вопрос гораздо сложнее, чем в случае белых карликов. Там работали только силы гравитации, они сдавливали вещество, а принцип Паули их «расталкивал». Нейтроны же сильно взаимодействуют друг с другом, причем тонкости этого взаимодействия тогда были совершенно не ясны и трудно было делать какие-либо численные оценки. Тем не менее Оппенгеймер с присушим ему блеском провел их и пришел к выводу, что массовый предел сравним с пределом Чандрасекара для белых карликов.
Он хотел обсудить вопрос с Эддингтоном и, зная его отрицательное отношение к коллапсу, решил изучить процесс досконально, а для этого поручил своему студенту Снайдеру разработать проблему коллапса звезды. Ясно, что студент может решить не слишком трудную задачу, и Оппенгеймер максимально упростил ее, пренебрегая всем, чем только возможно. В результате Снайдер справился с заданием при помощи простого арифмометра, но получилось у него нечто необычное: оказалось, что коллапс звезды драматически зависит от того, откуда на нес смотришь.
Начнем с наблюдателя, находящегося в покое на безопасном расстоянии от звезды. Запомним, что есть еще один, которому повезло меньше: он сидит на самой поверхности коллапсирующей звезды и посылает сигналы своему более удачливому коллеге. Частота сигналов будет все время уменьшаться, и неподвижный наблюдатель придет к выводу, что часы на поверхности кодлапсируюшей звезды замедляют свой ход.
При достижении радиуса Шварцшильда эти часы просто остановятся. Неподвижный наблюдатель вынужден будет прийти к выводу, что ничего не происходит, или звезда коллапсирует за бесконечное время. Что будет с ней потом, никто не знает, потому что какое может быть «потом» после бесконечности? Все процессы на звезде как бы замерзают при приближении к радиусу Шварцшильда.
Пока в 1967 году известный физик Джон Уилер не придумал удачный термин «черные дыры», о таких объектах в литературе говорили как о замерзших звездах. Это замерзшее состояние и есть истинное содержание сингулярности в геометрии Шварцшильда. Как отмечали Снайдер и Оппенгеймер в своей статье, «коллапсируюшая звезда стремится перекрыть все каналы общения с удаленным наблюдателем, действует лишь ее гравитационное поле». Иными словами, возникает черная дыра.
Но что же происходит с нашим вторым наблюдателем? Не забывайте, что это всего лишь мысленный эксперимент; не дай Бог даже в кошмарном сне ощутить, что происходит в том фавитаиионном аду! Для наблюдателя на звезде радиус Шварцшильда не является чем-то выделенным, он проходит через него и дальше за вполне определенное время по своим часам. Единственное, что должно настораживать, это колоссальные приливные гравитационные силы, которые давно должны были разорвать его на мелкие кусочки.
Все это было написано в 1939 году, и мир сам был близок к тому, чтобы быть разорванным на куски Второй мировой войной. Оппенгеймер вскоре возглавил работы по созданию атомной бомбы и никогда больше не возвращался к тематике черных дыр, Эйнштейн тоже. В 1947 году Оппенгеймер стал директором Института перспективных исследований в Принстоне, где Эйнштейн был профессором. Время от времени они общались, но записей бесед не сохранилось. О черных дырах как-то забыли и вспомнили лишь в шестидесятые годы, когда появились такие экзотические небесные объекты, как квазары, пульсары и компактные источники гамма-лучей. Вот для того чтобы обеспечить колоссальное энерговыделение в них, и понадобились безумные гравитационные поля черных дыр и звездного коллапса. Астрономы стали их искать.
Аккреционный диск в двойной системе Наше Солнце существует в гордом одиночестве, но большинство звезд предпочитает компанию. Однако такое существование «в паре» небезопасно: более тяжелый партнер начинает притягивать к себе вещество своего соседа. Именно этот процесс и показан на рисунке. Газовая оболочка большой голубой звезды постепенно перетекает в аккреционный диск, быстро вращающийся вокруг своего маленького, но очень плотного компаньона. Огромные гравитационные силы притяжения разгоняют вещество до колоссальных энергий, и оно излучает при этом рентгеновские лучи.
Квазары были открыты в 1963 году, и сразу стало ясно, что их яркость меняется со временем. У небольшого их числа период изменения достаточно короток – месяцы или даже часы. Большинство астрономов сходятся на том, что такие короткопериодические флуктуации связаны с падением звезды на черную дыру, когда за короткое время выделяется невообразимое количество энергии. Но есть квазары, меняющие свою яркость с периодом пять – десять лет. «За тридцать лет наблюдения мы собрали колоссальное количество данных о них, но, к сожалению, мы все еще не понимаем до конца, что они собой представляют», – говорит Богдан Пачинский из Принстона.
Совсем недавно Майкл Хоукинс из Королевской обсерватории в Эдинбурге выдвинул гипотезу, что эти колебания вызываются черными дырами. И если раньше думали, что масса черных дыр во много раз превышает массу Солнца, то по идее Хоукинса – есть и совсем крошечные «дырочки», не больше метра в диаметре. Они родились в первые мгновения после Большого взрыва, и самая ближайшая такая крошка может быть не так уж далеко от нас.
Хоукинс заинтересовался квазарами достаточно случайно. В 1975 году он изучал небольшой участок неба в четыре-пять градусов на трех диапазонах длин волн. Целью было систематическое изучение переменных звезд. Уже к 1980 году Хоукинс понял, что звезды – совсем не единственные переменные объекты, причем есть вариации с очень долгими периодами. «Я обнаружил там четкие эмиссионные линии – безошибочное свидетельство того, что это квазары», – рассказывает он. Заинтересовавшись, Хоукинс оперативно поменял свои планы и стал наблюдать за квазарами. Через несколько лет ему удалось изучить почти все из полутора тысяч известных квазаров на «его» участке неба.
Квазары – это самые яркие объекты во Вселенной. Они ярче сотен галактик, но энергию излучают из небольшой области размером в нашу Солнечную систему. Хоукинс обнаружил, что каждый найденный им квазар меняет яркость за несколько лет по синусоидальному закону. Величина изменений – от тридцати до ста процентов. Но главная странность заключается в том, что эти изменения вызваны не процессами в самом квазаре, а их претерпевает свет на пути к земному наблюдателю. Это доказывается тем, что изменения в самих квазарах были бы более долгими для удаленных объектов, поскольку Вселенная расширяется, вызывая замедление времени для удаленных частей. Хоукинс не нашел такой зависимости.
Второй намек на то, что все происходит по дороге к Земле, Хоукинс нашел при анализе цвета квазаров. Обычно снижение яркости всегда сопровождается сменой цвета: чем жарче и ярче, тем синее. Но этого опять не наблюдается!
Хоукинс предположил, что причиной колебаний может стать небольшой массивный объект, действующий как гравитационная линза на пути лучей. Идея линзы объясняет и то, что цвет не меняется, и то, что нет зависимости от расстояния. Если линза близко от Земли, то она будет достаточно быстро проходить перед квазаром и период колебаний будет невелик. Проанализировав расстояние до переменных квазаров и периоды колебаний, Хоукинс пришел к выводу, что массы линз могут быть сравнимы с массами крупных планет.