Выбрать главу

Между тем поведение бактерий – далеко не единственный пример «ускоренной» эволюции в условиях стресса. Наука палеоантропология знает другой такой случай. Сегодня многие палеоантропологи считают, что аналогичным образом произошел один из важнейших этапов в эволюции дальних предшественников человека – от так называемых австралопитеков к собственно гоминидам. Те из австралопитеков, которые от чисто растительного рациона перешли к мясной пише, должны были выходить из лесов в открытые африканские саванны, чтобы найти себе там такую пищу (остатки недоеденных хищниками животных), и в ходе таких поисков порой забредали в изолированные от окружающего мира долины или ущелья. Там, оказавшись в трудных условиях, угрожавших их выживанию, они, по мнению палеоантропологов, эволюционировали (адаптировались) быстрее, чем те группы австралопитеков, которые оставались в привычных условиях леса и не нуждались в такой адаптации. Чем дольше была изоляция, тем больше накапливалось в группе таких эволюционных изменений, пока она окончательно не превратилась в новую, более совершенную группу Гомо.

Знаменитый «Кембрийский взрыв» свидетельствует, что подобные явления могут происходить и в более громадных масштабах. Напомним, что «Кембрийским взрывом» называется в биологии краткий (около миллиона лет) период быстрого (в геологических масштабах времени, разумеется) появления огромного числа новых биологических видов, отличавшихся радикально измененными телесными формами и структурами, например, именно тогда впервые возникли позвоночные, к которым принадлежит и человек. Сегодня считается, что этот период, отстоящий от нас почти на 500 миллионов лет, начался с резкого быстрого нарастания концентрации кислорода в земной атмосфере, что создало стрессовые условия для существовавших тогда организмов. Между прочим, не менее знаменитая катастрофа – исчезновение динозавров, произошедшее около 65 миллионов лет назад, скорее всего, в результате столкновения Земли с огромным метеоритом, – тоже сопровождалось ускоренным появлением множества новых видов (например, нынешних млекопитающих), причем, как показал американский исследователь Д. Яблонский, именно в ближайших окрестностях места падения метеорита, в районе нынешнего Мексиканского залива, новые виды появились раньше всего, уже через миллион лет после катастрофы, а ведь именно там стресс должен был быть сильнее всего.

Все эти примеры показывают, что неблагоприятные, стрессовые изменения среды не просто способствуют эволюции, но резко ускоряют ее, порой в громадных масштабах, но это лишь усугубляет загадку – каков же молекулярный механизм такого ускорения? Каким образом ухитряются наследственные молекулы ДНК так быстро меняться именно в нужный момент? откуда берется - опять-таки именно в нужный момент - такое множество благоприятных мутаций сразу?

На поверхности клетки располагаются рецепторы различного вида, которые взаимодействуют со своими сигнальными молекулами рения? Каким образом ухитряются наследственные молекулы ДНК так быстро меняться именно в нужный момент? Откуда берется – опять-таки именно в нужный момент – такое множество благоприятных мутаций сразу?

Защитный белок HSP-90 поддерживает молекулу сигнального рецептора в стабильном состоянии

Открытие Сюзанны Резерфорд и Сюзэн Лундквист, с рассказа о котором мы начади эту заметку, как раз и наметило контуры возможного ответа на все эти вопросы. Эти исследовательницы выбрали в качестве объекта изучения некий специфический белок, функции которого в организме связаны, с одной стороны, со стрессом, а с другой – с развитием и изменением клеток. Эта его двойственная роль, по мнению исследовательниц, должна была позволить проследить связь между стрессом и клеточными (а в конечном счете – и организменными) изменениями на самом глубоком, молекулярном уровне.

Белок этот называется HSP-90, что и обусловило название статьи в «Nature». Он относится к широкой и важной группе так называемых белков теплового шока, назначение которых, как видно из их определения, состоит в защите клеточных белков от теплового воздействия, то есть от «шока», который может быть вызван резким повышением температуры окружающей среды. Повышение температуры, вообще говоря, смертельно опасно для любых белков – оно разрушает химические связи внутри них, а это приводит к утрате молекулой белка его специфической формы, а с нею и способности к выполнению своих функций в клетке. Этот исход наглядно демонстрирует белок сваренного куриного яйца. Так вот, белки теплового шока, плавающие в межклеточной среде и окружающие снаружи поверхность клеток, как бы принимают тепловой удар на себя и благодаря этой своей «самоотверженности» предотвращают (до определенного предела, разумеется) разрушение клеточных белков. Исследования последних лет показали, что те же белки теплового шока способны защищать клеточные белки и от многих других опасностей и стрессов, например кислородного голодания, химических повреждений и даже от атаки некоторых патогенов. Более того, проникая в клетку, они защищают ее белки даже в отсутствие стресса, когда эти белковые молекулы только образуются внутри клетки, и до тех пор, пока они не свернутся надлежащим образом. Таким образом, белки теплового шока впору назвать просто «защитными».

Среди всех этих общезащитных белков HSP-90 выделяется одной уникальной особенностью. Он не занимается защитой образующихся белковых молекул. Подавляющее большинство его «подопечных» белков относится к классу так называемых передатчиков сигнала (signal transducers). Типичным примером таких передатчиков являются рецепторы клетки. Рецепторы – это белки, назначение которых состоит в распознавании специфических молекул, плавающих в межклеточном пространстве, и соединении с теми из них, которые определенным образом «соответствуют» данному рецептору. Белок-рецептор имеет удлиненную форму: его «головка», как грибок, торчит над поверхностью клетки, «тельце» пронизывает ее клеточную мембрану, а «хвост» находится внутри клетки.

При мощном внешнем воздействии молекулы HSP-90 устремляются на борьбу с ним, а это позволяет проявиться скрытым мутациям.

Рисунки Ю. Сарафанова

Рецепторы – «передатчики сигналов» рассчитаны на соединение с теми специфическими молекулами (гормонами, феромонами, нейротрансмиттерами, факторами роста и т.д.), которые циркулируют в межклеточной среде, перенося химические сигналы от одних клеток к другим. Известно, например, что в процессе роста эмбриона такие «сигнальные молекулы» понуждают клетки в определенных местах эмбриона к специализации, командуя им превращаться в клетки глаза, конечностей, сердца и т.д. Как это происходит? Когда сигнальная молекула садится на торчащую из клетки «чашечку» рецептора, это вызывает в рецепторе изменение его формы – как говорят, «конформационное изменение». Такое изменение продвигается вдоль тела рецептора и достигает его «хвоста», находящегося внутри клетки. Окружающие этот «хвост» специальные белки, киназы, под воздействием такого конформационного изменения понуждаются вступать в специфические биохимические реакции, что влечет за собой целый каскад последовательных химических превращений, достигающих в конечном счете наследственных молекул, укрытых в ядре клетки.