ДНК – словно лента в магнитофоне. Если не нажать на кнопку, вы ничего не услышите. Первичная структура – это сама запись на магнитной ленте, а при нажатии на кнопку возникает звук – это функция ДНК. Сама же лента молчит и ни о чем не говорит, несмотря на то, что на ней уже есть запись. Только сейчас начали понимать, что открытие структуры ДНК – только первая часть, исходная позиция для всей программы. Как только о завершении этой части работ было объявлено, мгновенно вспомнили, что это только промежуточный этап. И появились термины «протеомика», «транекриптомика», для попытки описания дальнейших исследований. Теперь ясно, что деньги и внимание смешаются в область, называющуюся «функциональная геномика». Закончившаяся первая фаза, продолжавшаяся 12 лет – с 1989 по 2001 год, относится к структурной геномике, являющейся для функциональной геномики химической и физической основой.
К чему мы пришли? Развеялись многие мифы. Например, еще три года назад практически все ученые на основании различных косвенных данных считали, что в геноме человека содержится около 80 тысяч генов. После расшифровки структуры оказалось, что их намного меньше: около 35 тысяч. То есть ошибка оказалась более, чем вдвое. Это первый зримый результат.
Второе. Выяснилось, что гены составляют ничтожную долю всего генома, около двух-трех процентов. В любом случае генов, то есть тех участков ДНК, на которых записана информация о структуре либо РНК, либо белков, – того, что звучит на магнитофонной ленте, – меньше пяти процентов. Остальное абсолютно непонятно, что это такое! Мы знаем структуру, но мы смотрим на нее, как на некий арабский текст, не зная арабского языка. Этот результат был предвиден, но не в таких масштабах. Предполагали, что это может быть две трети, пусть даже четыре пятых, но оказалось, что в геноме минимум 95 процентов неизвестной и непонятной информации!
У бактерий этого нет. У бактерий весь геном значим, состоит только из генов. Получается, что эволюция от бактерий к человеку идет в сторону накапливания некоей «бессмыслицы». Однако вряд ли это бессмыслица – мы просто не понимаем пока, что это такое. Структурная геномика сейчас на распутье. Одна дорога – изучение генов с известной структурой с целью установления их функции. Эта задача крайне важна для медицины. Другой путь – изучение тех 95 процентов ДНК, которые Крик когда-то неосторожно назвал «мусорной ДНК». Он, мне кажется, ошибался. Это, конечно, не мусор, эволюция сумела бы избавиться от балласта.
Сейчас можно попытаться ответить на вопрос: не зря ли потрачены деньги? Ведь работа по структуре стоила больше шести миллиардов долларов. Это был глобальный проект, продолжавшийся больше десяти лет, в котором участвовали тысячи исследователей. Хромосомы были разделены между разными группами, каждая исследовала свою хромосому, а потом все стыковали. Использовали все достижения вычислительной техники, компьютерные программы, математическое обеспечение, суперкомпьютеры. Результат стал достижением как биологии, так и в той же мере информатики. Без компьютеров это было бы невозможно: представьте только, что мы рукой бы выписывали больше трех миллиардов нуклеотидных пар! А это и есть размер генома человека!
Если бы меня попросили сформулировать лозунг сегодняшнего дня в геномике, я бы сказал: «От знания – к пониманию». Многие не понимают разницу между знанием и пониманием. Можно прекрасно знать, что написано, но совершенно не понимать, что из этого следует. Мы в такой ситуации. Раньше биологию называли наукой, бедной фактами, в отличие от, например, физики, где очень много фактов. Теперь же биология – это наука, сверхбогатая фактами, если под фактами иметь в виду структурную информацию. Но теперь она стала наукой, не понимающей своего собственного богатства. Мы сидим на горе золота, но как превратить это золото в полезные для нас предметы, мы не знаем. Структура расшифрована, но не познана.
Медицина, в идеале, становится теперь областью приложений геномных знаний. Это, например, конструирование лекарств. За весь прошлый век человечество изобрело примерно пятьсот разных типов лекарств. А за ближайшее десятилетие, я не боюсь это предсказывать, будет создано примерно столько же новых. И только это уже с лихвой окупит все затраты, так как производство лекарств – это миллиардные доходы, многие десятки миллиардов инвестиций. И это, конечно, кратчайший путь. Если вы знаете новые гены – значит, вы знаете новые белки. Зная новые белки, вы можете установить их функцию. А зная функцию белка, вы можете узнать. как эта функция нарушается при той или иной болезни, а значит, направленно ее исправить, воздействуя на данный белок.
П. Клее. Американо-японское, 1918
Так действуют сейчас фармакологи – дизайнеры лекарств. В отличие от дизайнеров одежды они рисуют не мини-юбки, а те лекарства, которые должны направленно, точечно, как луч лазера, бить в определенный белок. Либо усиливая его функцию, чтобы он работал лучше, либо, наоборот, если он вреден, блокируя его работу. Это – новая фармакология, которая построена не на эмпирике, а на точном знании. Вся фармакология прошлого века – это цепь счастливых находок, и только к концу века она встала на рациональную основу. Вы можете на экране компьютера создавать лекарство, а потом химики его вам синтезируют.
Это колоссальный прорыв, начало направленной, индивидуальной медицины с осмысленным поиском лекарств. Для этого нужно изучить соответствующие белки. А структуру белков мы знаем по структуре генов. Мы можем их выделять, размножать, изучать в пробирке, сравнивать с известными белками. Всем этим занимается протеомика, наука, порожденная геномикой, – ее дочь, которая скоро перерастет матушку. Протеомика – изучение совокупности белков клетки. Геном организма в течение жизни постоянен. Ваши 35 тысяч генов на всю жизнь при вас. Разница заключается в том, что, когда вы были младенцем, у вас работали одни гены, а когда вы стали взрослым, некоторые из ваших генов продолжают работать, но включаются еще и другие. То есть в разном возрасте работают разные ансамбли генов. Это касается и всего организма, и отдельной клетки. Меняется спектр активности генов, но сами гены не меняются.
Из одного и того же гена можно получить несколько разных белков. Это довольно сложный механизм, но суть его заключается в том, что, используя разные куски одного гена, как из мозаики, можно собрать разные картинки. Попросту говоря, если пометить разные куски гена буквами А, В, С, D, вы можете сделать белок из всех четырех блоков, а можете так, что у вас будет белок только AD. Серединку вы выбросите. Или сделать белок без начала: BCD. Этот механизм, который позволяет из одного гена получать много разных белков, довольно хорошо изучен. Поэтому разнообразие белков гораздо больше, чем разнообразие генов. Это создает гигантские возможности для организма «играть» на соотношении разных белков в разных ситуациях, в зависимости от его потребностей, оттого, болен организм или здоров, и т.д. Поэтому протеомика неразрывно связана с геномикой через структуру генов, но она решает и самостоятельные задачи, включая функции белков в разных формах как потомства одного гена.
Структурная геномика уже дает большую отдачу. Сейчас из 35 тысяч генов человека мы прилично знаем больше десяти тысяч, включая их соответствующие продукты, то есть белки. Остальное находится в процессе разработки. За год сейчас характеризуют тысячи новых генов. Уже сейчас результаты проекта очень широко используются. Например, геномная диагностика. Очень многие болезни можно точно диагностировать с помощью анализа ДНК. Эти методы быстрые, за один-два дня все это можно проделать. В России такие анализы делают в Москве в Медико-генетическом центре, в Петербурге. Томске, Уфе, Новосибирске. Конечно, мечта геномшиков – это не просто знать, какой ген «заболел», но и вылечить его. Для такой генной терапии вы в больную клетку подставляете здоровый ген, чтобы он функционально заместил больной, – своеобразное молекулярное протезирование. При нем больной ген в клетке остается, а здоровый работает вместо него.
Приложения геномики практически безграничны. Например, некоторые работы по геномике в нашем институте финансируют археологи. В них заинтересованы историки, лингвисты, этнографы, антропологи, палеонтологи, криминалисты…