Мобильность генома: единство целого при свободе частей.
Геном эунариот не является закрытой системой. Носители чужеродных ДНИ и РНК способны проникать в цитоплазму (а), затем происходит либо их исключение из состава генома, либо адаптация (6), когда они стабильно сосуществуют в цитоплазме генома-хозяина, переходя в разряд факультативных элементов. Геном эукариот устроен по принципу «единство целого при свободе частей». Р.В. Хесин впервые пришел к выводу, что благодаря мобильным элементам генофонды всех организмов потенциально объединены в один общий генофонд всего живого мира.
Наследственная система – лишь часть организации клетки. В ней за последние два-три десятилетия открыта непредвиденная сфера сложности и координации, совместимая с компьютерной технологией и целеполаганием. Клетка непрерывно собирает и анализирует информацию о своем внутреннем состоянии и внешней среде, принимая решения о росте, движении, дифференцировке.
Клетки способны ответить на вызов среды активным генетическим поиском, а не пассивно ждать случайного возникновения мутации, которая будет угодна «всемогущему» отбору. Клеточный поиск может включать и создание новых текстов, и перемены в количественном составе и расположении генетических элементов, и запуск программ, координирующих одномоментно работу десятков генов, и создание новых устойчивых систем генной регуляции. Рассмотрим примеры.
Скажем, устойчивость клеток (организмов) к яду в некоторых случаях может повышаться в сотни раз, чего нельзя достигнуть никакой мутацией. Оказалось, что сегменты хромосом с геном устойчивости способны отрываться от своего лона, увеличиваться в числе (амплификация), воспроизводиться в цитоплазме в большом количестве, принимая разные внешние воплощения, вплоть до так называемых мини-хромосом. Чем больше доза яда, тем больше возникает защитных копий. В модельных опытах по химическому блокированию деления одноклеточного паразита лейшмании устойчивость этого простейшего организма к яду могла возрастать в 1000 раз! При этом доля размноженных сегментов с геном устойчивости достигала 10 процентов генома! Когда действие яда прекращалось, пропорционально уменьшалось число свободных копий. Но некоторая часть их оставалась в цитоплазме и после полного исчезновения яда. Это своего рода материализованная память о бывшем испытании. Когда возобновляли действие яда, оставшиеся защитные копии гена быстро преумножались (амплифицировались) по уже накатанному сценарию.
Позвольте, да это ж явная модель известной жирафы Ламарка!
По дарвиновской теории эволюции приспособительные преобразования создаются шаг за шагом путем отбора тех, у которых случайно возникли «нужные» наследственные изменения. Но это оказалось упрощением, совершенно неверным представлением о степени сложности клетки и ее способности к целесообразному поведен ию.
Цена дарвиновской селективной эволюции и время (число поколений), нужные для перебора случайных признаков, постоянно вызывали сомнение у биологов. С другой стороны, эволюционный сценарий Ламарка избавляет or унизительной необходимости верить, что «все живое лишь помарка за короткий вымороченный день». Вот почему Осип Мандельштам, который под влиянием своего друга эволюциониста Б.С. Кузина прочитал труды многих великих натуралистов, в своем поэтическом шедевре назвал Ламарка фехтовальщиком за честь природы. Выморочный день и помарка – это поэтические метафоры естественного отбора и борьбы за существование, в жертву которым должны приноситься живые организмы за каждый щаг эволюции.
В 1994 году к 250-му юбилею Ламарка (1744-1829) профессор Петербургского университета известный зоолог-эволюционист Лев Николаевич Серавин опубликовал вдохновенную статью, названную «Похвальное слово Ламарку». Он напомнил, что роль Ламарка в биологии колоссальна. Здесь и открытия в систематике животных, которые впервые были подразделены на две резко различные линии – позвоночные и беспозвоночные, и принцип биологического прогресса, свойственное живой природе повышение уровня организации («лестница существ Ламарка»), и первая, выдвинутая за 50 лет до Дарвина, теория эволюции путем трансформации видов, и, наконец, изобретение самого термина «биология». Но случилось так, что возобладала свойственная людям психологическая особенность упрощать явления подобно детям, дающим друг другу клички, выпячивая какую-либо одну внешнюю и порой маловажную особенность. Так и в случае с Ламарком – его вспоминают больше всего в связи с термином «ламаркизм», понимая под этим феномен наследования результатов упражнений или модификаций фенотипа, вызванных средой.
Но когда исследования перешли на молекулярный уровень, выяснилось, что граница между признаками и наследственными задатками здесь может быть зыбкой, в зависимости от того, что считать признаком. Например, число, клеточная топография и разные воплощения размноженных защитных внехромосомных сегментов ДН К при действии яда – это и наследственный элемент, и признак одновременно. В большинстве практических случаев можно исходить из того, что вызванные средой или физиологической нагрузкой вариации признака (к примеру мышцы тяжелоатлета) не наследуются, однако сложности возникают, если исследования переходят на клеточный или молекулярный уровень.
Приведем еще один пример «молекулярной жирафы» из области медицинской генетики. Недавно была открыта группа болезней, связанных тем, что в ДНК образуются особые островки тринуклеотидных повторов, которые самопроизвольно, в силу неясных еще внутренних свойств аппарата воспроизведения ДНК увеличиваются в размерах в ряду поколений. Совсем как шея у жирафы. Только последствия такой автоматической или автогенетической экспансии повторов получаются печальные. В 1943 году была описана сцепленная с полом умственная недостаточность, поражающая в основном мужчин. В 1969 году было найдено, что у таких пациентов X-хромосома обладает повышенной ломкостью в одном определенном районе. Значительная часть мужчин, носителей мутантного гена, не заболевают. Однако, пройдя одно поколение через дочерей, хромосома с мутантным геном неизменно вызывает заболевание у мальчиков-внуков. Происходит предсказуемое автоматическое усиление действия мутации в ряду поколений. Подобные факты были замечены медиками давно, но генетики склонны были считать такое пред мутационное состояние или «упреждение» болезни предрассудком.
В 1991 году ген, приводящий к синдрому возрастающей в поколениях умственной отсталости, был клонирован. Клонирование во многом позволило понять удивительные семейные особенности наследования. Оказывается, в структуре ДНК этого гена в норме у всех людей есть островки тринуклеотидных повторов (ЦГГ или цитозин – гуанин – гуанин). Если повторов от 6 до 46 – это в пределах нормы. Если число этих же повторов составляет 52-100, то ситуация уже предмутационная, с высокой предрасположенностью к заболеванию мужских потомков. Причем, чем больше блок повторов, тем выше вероятность, что у потомков мутация умственной недостаточности проявится полностью. При числе повторов в гене 200-250 у всех мужчин, носителей такого блока, возникает умственная отсталость.
В этом случае мы имеем еще один аналог «молекулярной жирафы» Ламарка. Достаточно только представить вместо усиления умственной отсталости увеличение шеи жирафы… Так что права оказалась дочь Ламарка, пророчившая, что потомки оценят отвергнутые идеи ее великого отца.
Наследование приобретенных признаков становится правилом в тех случаях, когда видимый признак зависит от соотношения в клетке постоянных и необязательных или факультативных элементов генома. Следующий пример – наилучший для доказательства этой мысли. Французские генетики еще перед войной нашли, что некоторые линии плодовых мушек дрозофил отличаются необычной чувствительностью к углекислому газу. На обычных дрозофил углекислый газ действует, как наркоз, от которого они быстро отходят, если газ убрать. Мухи же из чувствительных линий падают замертво после нескольких секунд воздействия. Этот признак наследовался по материнской линии.