Все прекрасно, изящно и даже правдоподобно, как считают многие теоретики, но вопрос-то все равно остается: откуда в древнем шаровом скоплении взялась планета, если для ее образования нужны тяжелые элементы. которых в этом скоплении практически нет? Сигурдсон предполагает, что этот парадокс требует пересмотра прежних представлений о механизме образования больших газовых планет типа Юпитера, и другие астрономы как будто уже готовы с ним согласиться. Возможно, что для образования газовых планет-гигантов не так уж необходимо наличие твердого ядра из тяжелых элементов и они могут формироваться напрямую из того же газа, что та звезда, около которой они затем обращаются. Если такая возможность реальна, говорит Сигурдсон, то она означает, что планеты — а стало быть, и жизнь на них — могли возникнуть на 5-6 миллиардов лет раньше, чем считалось до сих пор.
Это последнее утверждение - относительно возраста жизни во Вселенной — еще нуждается, однако, в дополнительном анализе, потому что возникновение жизни требует нс только наличия планет, но и выполнения еще ряда условий. К сожалению, обсуждение этих условий требует куда большего места и времени, чем позволяют рамки данной заметки.
Адреса в Интернете:
Космический телескоп имени Уэбба: ngst.grfc.nasa.gov
Модель столкновения нейтронных звезд: www.ukaff.ac.uk/rnovLes/nsmerger
Михаил Васильев
НАСА: проблемы, достижения, перспективы
Выступая на встрече американских ученых, занятых в общенациональной программе космических исследований, доктор Стив Изаксон, наблюдающий за космическими и научными проектами в соответствующем отделе канцелярии Белого дома, откровенно заявил собравшимся, что в нынешних условиях "администрации будет очень легко отстраниться от любой планетарной программыж Некоторые из запущенных проектов НАСА уже оказались под угрозой закрытия или резкого замедления.
Это касается прежде всего плана отправки космического исследовательского корабля на планету Плутон (хотя окошко ее исследования, возможно, быстро закрывается, поскольку Плутон движется по вытянутой орбите и сейчас удаляется от Солнца), а также проекта исследований подледного океана, возможно, существующего на спутнике Юпитера Европе. В этих условиях участники различных проектов начинают, вполне естественно, конкурировать за финансирование, и сторонники каждого из проектов лоббируют в конгрессе в свою пользу В конечном счете это распыление сил вредит всем. К тому же сами конгрессмены и сенаторы имеют свои предпочтения.
Любопытно, что наибольшее число сторонников в конгрессе имеют проекты, связанные с поисками внеземной жизни (например, на Марсе). Некоторые ученые не без ехидства объясняют это недостаточным пониманием проблемы: политики зачастую не отдают себе отчета в том, что для ученых "жизнь на Марсе" — это даже самые простейшие микробы, и думают, что речь идет о поиске вполне развитых внеземных цивилизаций.
Как бы то ни было, картина предстоящих космических исследований представляется на данный момент такой. Япония планирует запустить в 2007 году орбитальный корабль для исследования климата на Венере. Очень любопытной представляется программа исследования Меркурия. Эта маленькая и чудовищно жаркая планетка, вечно обращенная к Солнцу одной своей стороной, должна получить в предстоящем десятилетии сразу три орбитальных исследовательских спутника: один американский (2004 — 2009 годы), один японо-европейский (в 2009 году) и один чисто европейский (2009 — 2012 голы).
Целых четыре космические миссии (три американские и одна европейская) должны обследовать кометы в самые ближайшие годы. В конце февраля этого года на орбиту полета к комете Чурюмова — Герасименко был выведен зонд Европейского космического сообщества "Розетта". Его путешествие до цели составит 10 лет, зато потом долгое время он вместе с кометой будет приближаться к Солнцу, снабжая нас уникальной информацией.
Уже в этом году НАСА предполагает запустить к комете Темпеля-1 аппарат "Deep Impact". В 2006-м космический исследователь приблизится к косматой звезде, выбросит в сторону ее ядра 500-килограммовый медный цилиндр, оснащенный двигателем и системой наведения. Этот снаряд врежется в комету на скорости 10 километров в секунду. От такого удара образуется воронка диаметром 120 метров и глубиной метров 25. Тонны кометного вещества будут раскалены, испарены и выброшены с глубины, куда солнечный свет не проникал миллиарды лет. Сам "Deep Impact" нацелит на это облако приборы и переправит информацию на Землю.