Теория управления рисками поставила перед специалистами по хаосу, компьютерному моделированию, работе с большими массивами данных еще одну интересную задачу. Условно ее можно назвать анализом длинных причинно-следственных связей.
Все помнят историю с фреонами. Отказаться от них решили в Монреале в 1992 году. И обойтись это должно более чем в 12 миллиардов американских долларов. За незнание длинных причинно-следственных связей приходится платить очень дорого.
А есть и другие, гораздо более опасные связи. Мы оперируем сейчас такими временными и пространственными масштабами, с которыми никогда не имели дела раньше. Нужна техника, более того — даже индустрия компьютерного анализа, на выходе которого должно быть предупреждение о будущих угрозах. Чтобы дальше царствовать спокойно, нужен золотой петушок.
Рис.З
Сравните две кривые.
Сверху - зависимость логарифма индекса Доу-Джонса от времени перед Великой депрессией 1929 г. Внизу - зависимость концентрации ионов хлора в родниках перед землетрясением е Кобе в 1995 г.
И еще, пожалуй, одна картинка, показывающая, что самые разные катастрофические события могут развиваться по одним законам, — а это загадка и надежда на разгадку. Речь идет о сложно организованных иерархических системах.
На рис. 3 сверху по оси ординат отложен логарифм индекса Доу- Джонса, одного из главных индикаторов состояния экономики, по оси абсцисс — время вверху. Здесь показан период перед Великой депрессией 1929 года. Внизу — концентрация ионов хлора в родниках в период, предшествующий землетрясению в Кобе. Обе кривые очень похожи, обе описываются с высокой точностью одной формулой. И, видимо, за этим сходством кроется аналогия между механизмами обоих явлений, возможность перенести методы прогноза из одной области в другую. Возможно, это ключ к разгадке.
И еще одна задача. Допустим, мы живем в 1927 году и знаем, что ждет американцев через два года. Как уберечь людей от беды? Это проблема социума, направляемого развития, воздействия на общественное сознание.
Работа с информацией, основанная на компьютерных технологиях, глобальные телекоммуникации — сегодня главные козыри при управлении риском. Во-первых, потому, что каждая катастрофа должна учить. В XX веке у каждой катастрофы были "предтечи" — аварии того же типа, но меньшего масштаба. И чтобы предупредить "премьеру", надо на основе скромной "репетиции" менять нормы, планы, правила игры в социуме и техносфере. Лучше вложить тысячу в прогноз и предупреждение аварии, чем миллион в ликвидацию ее последствий. Во-вторых, информация и прогноз позволяют спасать тысячи жизней, сокращая время реагирования на события. В-третьих...
Впрочем, здесь надо остановиться. Работы, ведущиеся сейчас в Институте прикладной математики им. М. В. Келдыша РАН и в ряде академических институтов по инициативе Министерства по чрезвычайным ситуациям, показали, что здесь есть огромное поле деятельности, на котором Хаос занимает ключевое положение.
Природа, нем она ни будь,
Но черт ее соавтор —
Вот в нем суть.
И.В. Гёте. "Фауст"
Вернемся к динамическому хаосу. Спросим; если предсказывать даже с помощью современных компьютерных технологий так непросто, то как же нам удается ориентироваться в нашем сложном и быстро меняющемся мире? Как удается разумно действовать, несмотря на свой весьма скромный горизонт прогноза?
Сталкиваясь с различными задачами моделирования — от процессов лазерной термохимии и солнечного динамо до процессов исторических, — могу утверждать, что всех их объединяет необходимость находить параметры порядка в поведении сложных систем и составлять прогнозы.
Именно такой "тяжелой" системе и методам ее анализа и был посвящен грант РФФИ 97-01-00396, которым мне довелось руководить. Эта система описывает так называемую жесткую турбулентность — явление, при котором на хаотическом фоне иногда возникают гигантские всплески. Почему? Можно ли объяснить это на пальцах? Можно ли предвидеть "катастрофу"?
Принципиально важен вопрос; можно ли это явление, описываемое весьма сложной системой уравнений для бесконечного числа степеней свободы, смоделировать предельно просто? Если да, можно надеяться, что удастся удачно упростить и в других случаях. Если нет.., надо думать дальше.
Благодаря настойчивости и изобретательности С. В. Ершова и А. Б. Потапова был получен положительный ответ. Жесткую турбулентность удалось описать настолько просто, что численный анализ упрощенной системы сейчас можно поручить физтеху-второкурснику.