Это взялся сделать Матвей Бронштейн. Он дружил с Ландау с университетских лет, высоко его ценил, но в данном случае стал не на его сторону. Бронштейн не просто понял результат Бора-Розенфельда, он понял его лучше самих авторов. Весной 1934 года в «Докладах Академии наук» он опубликовал заметку, в которой усовершенствовал логику мысленных экспериментов Бора-Розенфельда, изложив ее на трех страницах вместо шестидесяти. Бронштейн прояснил физическую природу боровского вывода, — мысленный экспериментатор должен с неограниченной свободой выбирать заряд и массу пробного тела.
История дала возможность подсмотреть, как, вскоре после этой заметки, встретились за круглым столом все заинтересованные в ch-теории лица. Это произошло в Харькове, куда в мае 1934 году они съехались на конференцию по теоретической физике. На газетном фото — слева направо — Ландау, Бор, Розенфельд и Бронштейн.
Неограниченная свобода в выборе заряда и массы..? Такой недосказанный вопрос, вероятно, и привел Бронштейна к его докторской диссертации 1935 года и двум статьям 1936 года о квантовой гравитации и к важнейшему до сего дня физическому результату в этой области. Он был из очень немногих физиков, кто чувствовал себя как дома и в микрофизике, где квантовая теория играет первую скрипку, и в астрофизике, где на первой виолончели играет гравитация. И потому он вполне мог заметить, что в гравитации подобной неограниченной свободы быть не может. Во-первых, гравитационный заряд и масса — это одно и то же, а, во-вторых, произвольно увеличивая массу пробного тела, непроизвольно натыкаешься на гравитационный радиус, когда образуется черная дыра, и пробное тело, можно сказать, теряется из виду. А, значит, в квантовой гравитации не сработает логика Бора-Розенфельда?
К 1935 году, надо сказать, квантовая гравитация находилась в состоянии весенней спячки. Считалось, что гравитацию можно проквантовать тем же макаром, что электродинамику, просто сам этот «макар» надо довести до ума. Но если квантовая электродинамика была совершенно необходима для понимания реальных явлений атомной и ядерной физики, то причинами для квантования гравитации были лишь возвышенные «общие соображения».
Бронштейн прекрасно понимал (и был первым в этом понимании), что главные физические задачи, которые требовали квантовой гравитации, не меньше требовали сильного поля — конец жизни звезды и начало жизни Вселенной. Но прежде всего он построил квантовую теорию слабого гравитационного поля, когда искривление пространства-времени очень мало. В этом приближении он получил два первых физических результата — не удивительные, но совершенно необходимые для здоровой теории и требуемые принципом соответствия. Представляя гравитационное взаимодействие материальных тел посредством «промежуточного агента — гравитационных квантов», он из cGh-теории слабого поля получил в неквантовом пределе эйнштейновский cG-закон гравитационного излучения, а в классическом пределе — ньютоновский G-закон всемирного тяготения.
Дружеский шарж выражает отношение К.П. Бронштейна к научно-социалистическому планированию науки (когда на эту тему проводились Всесоюзные конференции): «Всякий план есть предсказание». Однако предсказание о теории квантовой гравитации он сделал без помощи гадальных карт; лишь силой научной логики.
Единственным способом пощупать сильно-квантовый случай был анализ измеримости в cGh-теории.
Именно проводя этот анализ, Бронштейн обнаружил «принципиальное различие между квантовой электродинамикой и квантовой теорией гравитационного поля». Различие это коренится в физическом свойстве гравигации, открытом еще Галилеем и ставшим основой эйнштейновской теории гравитации: движение тела в гравитационном поле не зависит от его массы, движение брошенного камня зависит только от его начальной скорости. Другими словами, гравитационный заряд и масса тела в сущности одно и то же. Поэтому в гравитации и неприменим метод, указанный Бором для электродинамики.
В результате этого различия, как показал Бронштейн, гравитация измерима лишь с ограниченной точностью, рубеж измеримости определяют константы с, G и h, из которых уже можно составить длину Ipi = (hG/C3)1/2 = 10-33 сантиметра, — знаменитую планковскую длину. Но поскольку, благодаря Эйнштейну, гравитация — это геометрия пространства-времени, то значит, включение в игру квантов делает и саму геометрию неопределимой. На этом основании, семьдесят лет назад, ленинградской осенью 1935 года, Бронштейн сделал такое предсказание: