Но ген МеСР2 — лишь один из генов Х-хромосомы. Как мы говорили, полная ее расшифровка показала, что более трети ее генов, около 300, связаны с разными болезнями, причем около 100 из этих генов — с нейрологическими заболеваниями. И если повреждение каждого из этих генов влечет какое-то повреждение работы мозга, можно думать, что в норме все эти гены, видимо, как-то связаны с его нормальной работой. Иными словами, порядка 100 генов Х-хромосомы (почти 10 процентов всех ее генов!) кодируют такие белки, которые, по всей видимости, выполняют функции, важные для нормального развития и работы мозга.
Подтверждения их важной роли в высшей нервной деятельности человека были получены и в работах совсем другого рода. Так, недавно британский биолог Крэйг закончил исследование 2000 пар близнецов, как девочек, так и мальчиков; он изучал степень разнообразия их умственных способностей и социального поведения. Если эти свойства связаны с X- хромосомой, то следовало ожидать большего разнообразия в парах девочек, потому что у них работают 100 процентов генов одной Х-хромосомы и еще 25 процентов генов второй, «выключенной». У мальчиков же работают только 100 процентов генов их единственной Х-хромосомы. Оказалось, что эти характеристики действительно более разнообразны у девочек, то есть распределены именно так, как должно быть в случае их тесной связи с генами Х-хромосомы.
Многочисленность всех этих фактов побудила некоторых биологов выдвинуть радикальное предположение, согласно которому взятые вместе все эти гены Х-хромосомы образуют некий «Х-фактор» и именно он обуславливает уникальность человеческого мозга или, проще говоря, что пресловутые «гены очеловечивания» следует искать на Х-хромосоме.
Одним из возможных кандидатов на эту роль называют ген, открытый в 2004 году швейцарскими исследователями Кессманом и Бурки. Белок этого гена, называемый GLIJD2, управляет процессом разложения образующегося в мозгу нейромедиатора глютамата (нейромедиаторы — это различные вещества, участвующие в передаче нервных сигналов). Такой ген есть также у других приматов, но его нет у мартышек, и, видимо, он появился у предков человека после их отделения от мартышек. Но известно, что именно после отделения у этих общих предков человека и обезьян череп и мозги начали быстро увеличиваться. Следуя элементарному (но далеко не всегда правильному) рассуждению — «после этого значит вследствие этого», — Кесманн и Бурки предположили, что это явление — увеличение мозга (приведшее в конце концов, по их мнению, к «очеловечиванию») — было вызвано как раз появлением и последующей эволюцией их «глютаматового» гена. Им удалось доказать, что он появился благодаря удачной случайности. На Х-хромосоме уже был его предшественник в виде гена GLUD1 (он существует у человека и сейчас), и однажды в процессе образования на нем молекулярной копии, несущей в себе инструкцию по изготовлению соответствующего белка, одна из этих молекул-инструкций случайно не отправилась по назначению в клетку, а встроилась обратно в цепь ДНК в виде нового гена (случай так называемой ретротранспозиции). При этом встроилась она вблизи участка Х-хромосомы, уже связанного с работой мозга. Поэтому новый ген «автоматически» приобрел такую же специфичность. Затем он несколько раз менялся, так что его белок GLUD2 приобрел способность разлагать глютамат. «И вот так появление этого гена, — пишут авторы. — подготовило почву для последующего появления человека с его большим черепом и мозгом».