Маленький Большой Взрыв
В только что родившейся Вселенной вещество, как полагают ученые, находилось при огромной температуре. В этом микро-микро-микро-... микросгустке гуляли чудовищные вихри энергии. Такое состояние физики называют кварковой плазмой — когда кварки не собраны в ядерные частицы, а гуляют свободно, образуя этакий «кварковый газ». Свободная кварковая плазма может появиться только при фантастически больших температурах (или энергиях), потому что разбить ядерные частицы на отдельные кварки крайне трудно — они связаны там огромными силами (не будь этого, вещество не было бы устойчиво). Вот почему она могла — и должна была — существовать только в самые начальные мгновения после рождения Вселенной. Уже на следующем этапе, когда сгусток чуть-чуть расширился и его температура поэтому чуть-чуть понизилась, кварки тотчас соединились друг с другом и появились первые ядерные частицы, но еще не атомные ядра целиком. Частицы не могли собраться в устойчивые ядра, потому что сталкивались друг с другом с громадной скоростью и не успевали слипаться. Лишь на еще более позднем этапе, при еще большем охлаждении стали появляться устойчивые ядра, а еще позже они начали соединяться с электронами в устойчивые нейтральные атомы. Так в первичном сгустке по мере его охлаждения одни за другими образуются и «выпадают» частицы все большей сложности (что, кстати, сопровождается последовательным «выпадением» соответствующих «силовых полей»), пока все не «застывает» в виде атомов и состоящих из них макротел.
Законы образования таких макросгустков вещества, а из них — галактик, звезд и планет (с их возможной жизнью и разумом) берут начало «в начале», в законах рождения, движения и взаимодействия первых кварков. Но в нынешней природе свободных кварков нет уже нигде. Поэтому ученые решили сами создать такие условия, в которых кварки могли бы появиться и их можно было бы изучать. Как сказано, главное такое условие — огромные энергии и огромные температуры. Тут наука шла путем, обратным природе.
Природа (Вселенная), как мы видели, началась с высочайшей температуры и, постепенно остывая, рождала все более и более сложные частицы. Ученые же начали свои исследования с обычных температур и энергий и, соответственно, с изучения самых сложных частиц, атомов, а уже потом придумали, как ускорять частицы, чтобы их энергия становилась все больше и больше для бомбардировки атомных ядер и разбиения этих ядер на составляющие их более простые частицы — протоны и нейтроны. А к нашему времени ускорители стали такими мощными, что стало возможным приступить к разбиению нейтронов и протонов на самые простые, «первичные» частицы — свободные кварки.
Но возможности ученых, конечно, уступают возможностям Природы. Даже при самом большом усилии они не могут воспроизвести Большой Взрыв с его чудовищной концентрацией вещества. Все, что они могут, — это разогнать какое-то количество заряженных частиц, столкнуть их с неподвижной мишенью и посмотреть, какие более простые частицы родятся в таком столкновении. Чем быстрее разогнаны частицы перед столкновением, тем больше его энергия, тем больше надежд, что ее окажется достаточно для рождения свободных кварков, то есть для создания кварковой плазмы.
Сегодня физики уже могут разогнать частицы до релятивистских скоростей, то есть близко к скорости света, поэтому такие надежды становятся все более и более реальными. Отсюда — все чаще повторяющиеся попытки «воспроизвести» Большой Взрыв. Понятно, чем они отличаются от самого такого Взрыва. Там (при рождении Вселенной) речь шла о гигантском по массе сгустке вещества, здесь — о пучке микрочастиц, там — о настоящем взрыве, здесь — о столкновении частиц с мишенью, которое порождает какое-то количество других частиц. Единственное, что роднит эти два состояния, — что во втором случае экспериментаторы надеются на появление крохотного сгусточка кварковой плазмы, ну хотя бы на рождение нескольких свободных кварков, и то хорошо.
Пока что эти надежды не исполнились. Первый эксперимент такого рода был произведен в январе 2002 года на релятивистском ускорителе тяжелых ионов (RHIC) в Брукхейвенской лаборатории в США. Частицы золота были разогнаны на нем до энергии в 130 гигаэлектронвольт.
Это был по тем временам самый мощный ускоритель. Поэтому все его характеристики были рекордными. Например, скорость частицы в нем по окончании разгона составляла 99,995% от скорости света, на кольце располагались 1700 с лишним магнитов, на которые было намотано свыше 2000 километров провода, общий вес измерительной установки превышал 3000 тонн, и так далее. Ионы впрыскивались в ускоритель порциями, в каждой до миллиарда частиц, по нескольку десятков порций в секунду; энергия каждой порции при столкновении была эквивалентна нагреву до миллиардов градусов.