Как сообщили на страницах «Science» Смит и Пендри, эта система маскировки выдержала «боевое крещение». На экране локатора вместо цилиндра вдруг вырисовалась подставка, на которой он лежал. «Только она стала немного темнее и чуть расплылась», — так комментирует увиденную картину очевидец. Микроволны практически не проникали внутрь конструкции. Впрочем, из-за электрических потерь в метаматериале излучение заметно ослабло. Так что внимательный наблюдатель, приглядевшись к фону, пожалуй, разглядел бы очертания цилиндра. Он не растворился, а, так сказать, «замаскировался», как хамелеон.
«Мы слишком спешили, — признает Дэвид Смит, — а потому защитный экран оставляет желать лучшего. Предстоит еще много работы». Опыт показал, что маскировочные системы из метаматериалов можно конструировать, но сделан лишь «детский шаг» на пути к их созданию. «Мы не можем даже сказать, научимся ли когда-нибудь делать предметы невидимыми, как в книгах о Гарри Поттере».
Пока «шапка-невидимка» эффективна лишь в узком — микроволновом — диапазоне частот (в нем работают радиолокационные установки, а также беспроводные средства коммуникации, например, Bluetooth). Во всем остальном спектре электромагнитного излучения, в том числе в оптической его части, медный цилиндр виден всем.
Именно в этом кроется главный недостаток концепции, отмечает Джон Пендри. Но, очевидно, можно создать поверхность с регулируемыми электромагнитными свойствами — та будет маскировать объект сразу в нескольких диапазонах частот. Над этим сейчас и работают исследователи.
Еще одна проблема в том, что данный эффект срабатывает, лишь когда длина волны излучения сопоставима с размерами объекта. Поэтому в оптическом диапазоне можно экранировать разве что микроскопически малые объекты, которые и въяве-то не разглядишь — даже мальчик-с-пальчик слишком велик, чтобы укрыться под «шапкой-невидимкой», что уж там говорить о Гарри Поттере (длина волны видимого света составляет порядка 0,4 — 0,7 микрометра)! В принципе, если мы хотим маскировать видимые предметы, лучше изготовить для них покрытие из металлических колец нанометровой величины (!) — а этому мы пока не научились.
(Попутно заметим, что современные самолеты-невидимки типа «Стеллс» лишь особым образом маскируются, появляясь на экране локатора неразличимым темным пятнышком на фоне такого же темного неба. В данном же случае речь идет совсем о другом эффекте — о материалах, которые, в отличие от обшивки самолетов «Стеллс», вовсе не отражают электромагнитное излучение.)
Исследования ведутся и в инфракрасном диапазоне, то есть в непосредственной близости от оптической части спектра. Так, Владимир Шалаев и его коллеги из американского университета Пардю разработали материал, который экранирует инфракрасное излучение длиной волны порядка одного микрометра. Теоретически он состоит из многих тысяч золотых элементов размером 750 х 170 нанометров, нанесенных на стеклянную пластину в виде правильной сетки.
В эксперименте же исследователи обошлись тремя тончайшими пленками из золота, стекла и опять золота (толщина каждого слоя — 50 нанометров). Вертикально расположенные золотые пленки образовали своего рода обкладки крохотного квазиконденсатора. При определенной длине волны наступал электрический резонанс. Известно, что в узкой области спектра излучения — а именно там, где наблюдается электрический и магнитный резонанс — коэффициент преломления материала принимает отрицательное значение, а значит, излучение данной частоты лишь огибает экран, не отражаясь от него.
В конце 2005 года физикам из Аугсбургского университета Андрею Пименову и Алоизу Лойдлю вместе с коллегами из Иллинойсского университета и Польской Академии наук удалось добиться подобного эффекта в опытах с тонкими многослойными пленками, составленными из ферромагнитных и сверхпроводящих материалов. Впрочем, он наблюдался лишь при низких температурах близ мощного источника магнитного поля, а потому возможность его практического применения была крайне ограничена. «В будущих экспериментах, — говорит Андрей Пименов, — мы заменим ферромагнитные слои антиферромагнитными. Тогда этот эффект удастся получить даже без внешнего источника магнитного поля».