Чтобы посчитать сумму всех членов между а25 и а40 (от а26 до а40 включительно), мы просто найдем разность между этими двумя выражениями:
a26 + … + a40 = a42 — a27.
Теперь в нашем распоряжении имеется следующий трюк: чтобы найти сумму всех членов последовательности между двумя данными членами (не включая первый, но включая второй член), достаточно найти разность соответствующих (n + 2)-х членов.
МАРИО МЕРЦ (1925–2003)
Итальянский художник Марио Мерц, один из самых выдающихся представителей направления «арте повера», неоднократно использовал последовательность Фибоначчи во многих своих работах 1970-х гг., применяя целый ряд различных материалов (неоновые огни, ветки, шкуры животных, газеты). Так как числа Фибоначчи стремятся к бесконечности, потому что каждый следующий член равен сумме двух предыдущих, Мерц использовал это свойство знаменитой последовательности в качестве символа прогресса искусства и общества. Каждый шаг цивилизации — это сумма прошлых событий, в результате чего прошлое является неотъемлемой и важной частью будущего. Аналогично, современное искусство представляет собой сумму предшествующих искусств, ничто не может быть создано из ничего.
Работу Марио Мерца, изображающую последовательность Фибоначчи в виде спирали, можно увидеть на станции метро города Неаполя.
Существует бесконечное число пифагоровых троек, однако их нелегко найти. Но, как вы уже догадались, последовательность Фибоначчи позволяет найти пифагоровы тройки. Мы расскажем об этом в данном параграфе, но сначала покажем, какая существует связь между Фибоначчи, Пифагором и золотым сечением.
Самым известным свидетельством математического гения человечества является теорема Пифагора: в любом прямоугольном треугольнике квадрат длины большей стороны (гипотенузы) равен сумме квадратов длин двух других сторон (называемых катетами).
а2 = Ь2 + с2.
С геометрической точки зрения мы можем рассматривать все стороны прямоугольного треугольника как стороны трех построенных на них квадратов. Площадь квадрата равна квадрату длины его стороны (квадрат имеет равные стороны). Теорема Пифагора просто говорит, что общая площадь квадратов, построенных на катетах прямоугольного треугольника (сумма площадей двух квадратов), равна площади квадрата, построенного на гипотенузе.
Эта формула позволяет нам определить тип треугольника, не измеряя его углов. Все, что нам нужно сделать, — это найти квадраты длин трех сторон и сравнить квадрат длины большей стороны с суммой квадратов длин двух других сторон. В случае равенства мы имеем прямоугольный треугольник. Если квадрат длины большей стороны больше, то треугольник является тупоугольным (наибольший угол больше 90°). Если сумма квадратов больше, то треугольник является остроугольным (все три угла меньше 90°).
Если мы построим квадрат на каждой стороне прямоугольного треугольника, то количество бумаги, необходимое для того, чтобы покрыть больший квадрат, будет таким же, как и количество бумаги, необходимое для покрытия двух меньших квадратов.
Если длины сторон прямоугольного треугольника являются целыми числами, то они образуют группу из трех чисел, называемых пифагоровыми тройками. Другими словами, пифагорова тройка — это три целых числа (а, b, с), удовлетворяющих условию:
a2 = b2 + c2.
Теперь мы продемонстрируем метод нахождения пифагоровых троек с помощью последовательности Фибоначчи. Возьмем любые четыре последовательных числа из последовательности, например, 2, 3, 5 и 8, и построим еще три числа следующим образом:
1. Произведение двух крайних чисел: 2∙8 = 16;
2. Удвоенное произведение двух чисел в середине: 2∙(3∙5) = 30;
3. Сумма квадратов двух чисел в середине: З2 + 52 = 34.
Мы можем легко убедиться, что эти три числа (34, 30, 16) образуют пифагорову тройку:
162 = 256; 302 = 900; 342 = 1156 => 256 + 900 = 1156.
Этот метод работает в любом случае для любых четырех последовательных чисел из последовательности Фибоначчи.
ЗНАЧЕНИЕ И РОЛЬ ПИФАГОРОВЫХ ТРОЕК
Самая известная пифагорова тройка — из наименьшего прямоугольного треугольника с целочисленными сторонами — это (5, 4, 3). Эти числа удовлетворяют соотношению: