Выбрать главу

Развлечение для любимой

Положите указательный палец левой руки на среднюю монетку (которую можно трогать, но нельзя передвигать), а правой рукой немного отодвиньте в сторону куортер справа (который можно и трогать, и передвигать). А теперь — самый хитрый ход! Верните куортер на прежнее место так резко, чтобы он слегка ударил центральный никель, который вы по-прежнему придерживаете пальцем. Никель останется неподвижным, а вот левый куортер чуть «отъедет» от никеля — на освободившееся место вы и передвинете правый куортер. Задача решена!

Головоломка «всмятку»

Для тех, кто все еще мучается над отгадкой, — пожалуйста, ответ! Переверните сразу и первые, и вторые песочные часы; когда в трехминутных время — и песок — истечет, бросайте яйца в кипяток и следите за вторыми часами. Они будут «работать» еще ровно две минуты, что вам и нужно. Прекрасная работа, Альберт!

Магнит — железо

Если приблизить оба бруска концами друг к другу, они станут притягиваться (рис. 1), но выяснить, который из них магнит, пока не удастся. Тогда попробуем приставить один брусок перпендикулярно к середине другого. Если первый из них — магнит, он притянет второй брусок (рис. 2). И наоборот. Если первый брусок — обычное железо, он не притянет второй брусок (рис. 3). Объяснение простое: магнит прямоугольной формы в центре почти «нейтрален» — вся сила притяжения сосредоточена на его концах, иначе говоря, на полюсах.

Монетки на стакане

Для того чтобы успешно показать этот фокус, воспользуйтесь стаканом из толстого стекла. Положите большой и указательный пальцы одной руки на обе монетки и, прижав к стенкам стакана (рис. 1), осторожно скользите вниз — до тех пор, пока не достигнете середины стакана (рис. 2). А теперь — заключительный аккорд: резким движением оторвите монетки от стакана (рис. 3). Решивший эту головоломку смело может претендовать на купание в ванне лимонада!

Карточный крест

Сложите четыре карты «крестом», как показано на рисунке: верхний правый угол каждой карты должен быть накрыт другой картой.

Загадка старого факира

Секрет этой восточной хитрости состоит в следующем: прежде чем нагнуться за веревкой, скрестите руки так, как показано на рисунке. В таком положении вам достаточно будет каждой рукой по очереди взяться за ее концы и затем «распутать» руки: веревка сама собой завяжется узлом в центре. Вот вы и выполнили условие задачи: завязывая узел, ни разу не отпустили ни один из концов веревки. Поразительный трюк!

Полдоллара и бутылка содовой

Обратите особое внимание на условия пари: вызывающий обязался «опустить полдоллара в бутылку, не разбив ее». И при этом ни слова о том, что опустить надо лежавшую на столе монету!.. Поэтому попросту выньте из бумажника долларовую купюру, разорвите пополам, сверните одну половинку трубочкой и проткните ее в горлышко, — чем еще раз подтвердите, что вам по силам свершить невозможное! (И главное, вы действительно опустили в бутылку полдоллара, а не горсть мелочи на сумму в полдоллара, — как могут посоветовать некоторые!)

Дюймы, площади, квадраты

Площадь заштрихованного участка составляет четверть площади квадрата со стороной в три дюйма. Поскольку последняя равна девяти квадратным дюймам, то заштрихованная площадь — квадратных дюйма. Как бы вы ни вращали больший квадрат вокруг меньшего, площадь их взаимного перекрытия всегда будет оставаться неизменной, то есть равной 2¼ квадратных дюйма. Если при вращении большего квадрата получится позиция, показанная на рисунке (сторона ас будет разделена на отрезок аb, равный одному дюйму, и отрезок , равный двум дюймам), то площадь заштрихованного участка составит 1½ дюйма × 1½ дюйма — то есть те же самые 2¼ квадратных дюйма.

Как доставить молоко?

Наш герой попросту перевозит ... коров.

Хитрюга Пуст О’Брех

Он выигрывает, проигрывая пари! О’Брех снимает корзинку, съедает «трехпалубный» сандвич (за шесть долларов) до последней крошки и, закончив, отдает боссу 50 центов, нагло заявив: «Мне не следовало ввязываться в эту затею. Вас никому не переспорить!»

Квадратная задачка

Разместите четыре прямоугольника так, чтобы их меньшие, одинаковые у всех, стороны образовали в середине пустой квадрат (на рисунке заштрихован).