Выбрать главу

Глава 10 Как устроены белые карлики?

В § 1, когда мы обсуждали физические свойства различных звезд, нанесенных на диаграмму Герцшпрунга — Рессела, было уже обращено внимание на так называемые «белые карлики». Типичным представителем этого класса звезд является знаменитый спутник Сириуса, так называемый «Сириус В». Тогда же подчеркивалось, что эти странные звезды — отнюдь не редкая категория каких-то патологических «уродцев» в нашей Галактике. Наоборот, это весьма многочисленная группа звезд. Их в Галактике должно быть по крайней мере несколько миллиардов, а может быть, и все десять миллиардов, т. е. до 10% всех звезд нашей гигантской звездной системы. Следовательно, белые карлики должны были образоваться в результате какого-то закономерного процесса, который имел место у заметной части звезд. А отсюда следует, что наше понимание мира звезд будет весьма далеким от полноты, если мы не поймем природу белых карликов и не выясним вопроса об их происхождении. Впрочем, в этом параграфе мы не будем обсуждать вопросов, связанных с проблемой образования белых карликов,— это будет сделано в § 13. Наша задача пока что — попытаться понять природу этих удивительных объектов. Основные особенности белых карликов таковы:

a. Масса не слишком отличается от массы Солнца при радиусе, в сотню раз меньшем, чем у Солнца. Размеры белых карликов одного порядка с размерами земного шара.

b. Отсюда следует огромная средняя плотность вещества, доходящая до 106—107 г/см3 (т. е. до десятка тонн, «запрессованных» в кубическом сантиметре!).

c. Светимость белых карликов очень мала: в сотни и тысячи раз меньше солнечной.

При первой же попытке проанализировать условия в недрах белых карликов мы сразу же сталкиваемся с очень большой трудностью. В § 6 была установлена связь между массой звезды, ее радиусом и центральной температурой (см. формулу (6.2)). Так как последняя должна быть обратно пропорциональна радиусу звезды, то центральные температуры белых карликов, казалось бы, должны достигать огромных значений порядка многих сотен миллионов кельвинов. При таких чудовищных температурах там должно было выделяться непомерно большое количество ядерной энергии. Даже если предположить, что весь водород там «выгорел», тройная гелиевая реакция должна быть весьма эффективной. Выделяющаяся при ядерных реакциях энергия обязана «просачиваться» на поверхность и уходить в межзвездное пространство в форме излучения, которое должно было быть исключительно мощным. А между тем светимость белых карликов совершенно ничтожна, на несколько порядков меньше, чем у «обычных» звезд той же массы. В чем тут дело?

Попытаемся разобраться в этом парадоксе.

Прежде всего столь сильное расхождение между ожидаемой и наблюдаемой светимостью означает, что формула (6.2) § 6 попросту неприменима к белым карликам. Вспомним теперь, какие основные допущения были сделаны при выводе этой формулы. Прежде всего предполагалось, что звезда находится в состоянии равновесия под действием двух сил: гравитации и газового давления. Не приходится сомневаться, что белые карлики находятся в состоянии гидростатического равновесия, которое мы подробно обсуждали в § 6. В противном случае за короткое время они перестали бы существовать: рассеялись в межзвездном пространстве, если давление превышало бы гравитацию, либо сжались «в точку», если гравитация не была бы скомпенсирована давлением газа. Не приходится также сомневаться в универсальности закона всемирного тяготения: сила гравитации действует повсеместно и она не зависит ни от каких других свойств вещества, кроме его количества. Тогда остается только одна возможность: усомниться в зависимости газового давления от температуры, которую мы получили с помощью хорошо известного закона Клапейрона.

Этот закон справедлив для идеального газа. В § 6 мы убедились, что вещество недр обычных звезд с достаточной точностью можно считать идеальным газом. Следовательно, логический вывод состоит в том, что очень плотное вещество недр белых карликов уже не является идеальным газом.

Правда, резонно вообще усомниться, является ли это вещество газом? Может быть, это жидкость или твердое тело? Легко убедиться, что это не так. Ведь в жидкостях и твердых телах плотно упакованы атомы, которые соприкасаются своими электронными оболочками, имеющими не такие уж маленькие размеры: порядка 10-8 см. Ближе чем на такое расстояние атомные ядра, в которых сосредоточена практически вся масса атомов, «придвинуться» друг к другу не могут. Отсюда непосредственно следует, что средняя плотность твердого или жидкого вещества не может значительно превосходить 20 г/см3. Тот факт, что средняя плотность вещества в белых карликах может быть в десятки тысяч раз больше, означает, что ядра там находятся друг от друга на расстояниях, значительно меньших, чем 10-8 см. Отсюда следует, что электронные оболочки атомов как бы «раздавлены» и ядра отделены от электронов. В этом смысле мы можем говорить о веществе недр белых карликов как об очень плотной плазме. Но плазма — это прежде всего газ, т. е. такое состояние вещества, когда расстояние между образующими его частицами значительно превышает размеры последних. В нашем случае расстояние между ядрами не меньше чем 10-10 см, в то время как размеры ядер ничтожно малы — порядка 10-12 см.

Итак, вещество недр белых карликов — это очень плотный ионизованный газ. Однако из-за огромной плотности его физические свойства резко отличаются от свойств идеального газа. Не следует путать это отличие свойств со свойствами реальных газов, о которых достаточно много говорится в курсе физики.

Специфические свойства ионизованного газа при сверхвысоких плотностях определяются вырождением. Это явление находит себе объяснение только в рамках квантовой механики. Классической физике понятие «вырождение» чуждо. Что же это такое? Чтобы ответить на этот вопрос, нам придется сначала немного остановиться на особенностях движения электронов в атоме, описываемых законами квантовой механики. Состояние каждого электрона в атомной системе определяется заданием квантовых чисел. Эти числа суть главное квантовое число n, определяющее энергию электрона в атоме, квантовое число l, дающее значение орбитального вращательного момента электрона, квантовое число m, дающее значение проекции этого момента на физически выделенное направление (например, направление магнитного поля), и, наконец, квантовое число s, дающее значение собственного вращательного момента электрона (спин). Фундаментальным законом квантовой механики является принцип Паули, запрещающий для любой квантовой системы (например, сложного атома) двум каким-либо электронам иметь все квантовые числа одинаковыми. Поясним этот принцип на простой полуклассической боровской модели атома. Совокупность трех квантовых чисел (кроме спина) определяет орбиту электрона в атоме. Принцип Паули, применительно к этой модели атома, запрещает находиться на одной и той же квантовой орбите более чем двум электронам. Если на такой орбите находятся два электрона, то у них должны быть противоположно ориентированные спины. Это означает, что хотя три квантовых числа у таких электронов могут совпадать, квантовые числа, характеризующие спины электронов, должны быть различны.

Принцип Паули имеет огромное значение для всей атомной физики. В частности, только на основе этого принципа можно понять все особенности периодической системы элементов Менделеева. Принцип Паули имеет универсальное значение и применим ко всем квантовым системам, состоящим из большого числа тождественных частиц. Примером такой системы, в частности, являются обыкновенные металлы при комнатных температурах. Как известно, в металлах внешние электроны не связаны с «собственными» ядрами, а как бы «обобществлены». Они движутся в сложном электрическом поле ионной решетки металла. В грубом, полуклассическом приближении можно представить, что электроны движутся по некоторым, правда, весьма сложным траекториям, И конечно, для таких траекторий тоже должен выполняться принцип Паули. Это означает, что по каждой из упомянутых выше электронных траекторий может двигаться не больше двух электронов, которые должны отличаться своими спинами. Необходимо подчеркнуть, что согласно квантовомеханическим законам число таких возможных траекторий хотя и очень велико, но конечно. Следовательно, далеко не все геометрически возможные орбиты реализуются.