a. В недрах обычных звезд, где плотность хотя и высока, но заведомо ниже 1000 г/см3, газ не вырожден. Это обосновывает применимость обычных законов газового состояния, которыми мы широко пользовались в § 6.
b. У белых карликов средние, а тем более центральные плотности заведомо больше 1000 г/см3. Поэтому обычные законы газового состояния для них неприменимы. Для понимания белых карликов необходимо знать свойства вырожденного газа, описываемые уравнением его состояния (10.1). Из этого уравнения прежде всего следует, что структура белых карликов практически не зависит от их температуры. Так как, с другой стороны, светимость этих объектов определяется, их температурой (например, скорость термоядерных реакций зависит от температуры), то мы можем сделать вывод, что структура белых карликов не зависит и от светимости. В принципе, белый карлик может существовать (т. е. находиться в равновесной конфигурации) и при температуре, близкой к абсолютному нулю. Мы приходим, таким образом, к выводу, что для белых карликов, в отличие от «обычных» звезд, не существует зависимость «масса — светимость».
Для этих необычных звезд, однако, существует специфическая зависимость «масса — радиус». Подобно тому как сделанные из одного какого-либо металла шары равной массы должны иметь равные диаметры, размеры белых карликов с одинаковой массой также должны быть одинаковы. Это утверждение, очевидно, несправедливо для других звезд: звезды-гиганты и звезды главной последовательности могут иметь одинаковые массы, но существенно разные диаметры. Такое отличие белых карликов от остальных звезд объясняется тем, что температура почти не играет никакой роли в их гидростатическом равновесии, которое и определяет структуру.
Рис. 10.1: Зависимость массы белых карликов от их радиуса. |
Коль скоро это так, должно быть некоторое универсальное соотношение, связывающее массы белых карликов и их радиусы. В нашу задачу не входит вывод этой важной зависимости, который далеко не является элементарным. Сама зависимость (в логарифмическом масштабе) представлена на рис. 10.1. На этом рисунке кружки и квадратики отмечают положение некоторых белых карликов с известными массами и радиусами. Приведенная на этом рисунке зависимость массы и радиуса для белых карликов имеет две любопытные особенности. Во-первых, из нее следует, что чем больше масса белого карлика, тем меньше его радиус. В этом отношении белые карлики ведут себя иначе, чем шары, выполненные из одного блока металла... Во-вторых, у белых карликов существует предельное допустимое значение массы[ 27 ]. Теория предсказывает, что в природе не могут существовать белые карлики, масса которых превышала бы 1,43 массы Солнца[ 28 ]. Если масса белого карлика приближается к этому критическому значению со стороны меньших масс, то его радиус будет стремиться к нулю. Практически это означает, что начиная с некоторой массы давление вырожденного газа уже не может уравновесить силу гравитации и звезда катастрофически сожмется.
Этот результат имеет исключительно большое значение для всей проблемы звездной эволюции. Поэтому стоит остановиться на нем несколько подробнее. По мере увеличения массы белого карлика его центральная плотность будет все более и более расти. Вырождение электронного газа будет становиться все сильнее. Это значит, что на одну «дозволенную» траекторию будет приходиться все большее число частиц. Им будет очень «тесно» и они будут (дабы не нарушать принцип Паули!) двигаться все с большими и большими скоростями. Эти скорости станут довольно близкими к скорости света. Возникнет новое состояние вещества, которое называется «релятивистским вырождением». Уравнение состояния такого газа изменится — оно уже не будет больше описываться формулой (10.1). Вместо (10.1) будет иметь место соотношение
(10.4) |
Для оценки создавшейся ситуации положим, как это делалось в § 6, M/R3. Тогда при релятивистском вырождении PM4/3/R4, а сила, противодействующая гравитации и равная перепаду давления,
Между тем сила гравитации равна GM/R2M2/R5. Мы видим, что обе силы — гравитация и перепад давления — зависят от размеров звезды одинаковым образом: как R-5, и по-разному зависят от массы. Следовательно, должно существовать некоторое, совершенно определенное значение массы звезды, при котором обе силы уравновешиваются. Если же масса превышает некоторое критическое значение, то сила гравитации всегда будет преобладать над силой, обусловленной перепадом давления, и звезда катастрофически сожмется.
Допустим теперь, что масса меньше критической. Тогда сила, обусловленная давлением, будет больше гравитационной, следовательно, звезда начнет расширяться. В процессе расширения релятивистское вырождение сменится обычным «нерелятивистским» вырождением. В этом случае из уравнения состояния P5/3 следует, что P/RM5/3/R6, т. е. зависимость силы, противодействующей гравитации, от R будет более сильной. Поэтому при некотором значении радиуса расширение звезды прекратится.
Этот качественный анализ иллюстрирует, с одной стороны, необходимость существования зависимости масса — радиус для белых карликов и ее характер (т. е. то, что радиус тем меньше, чем больше масса), а, с другой стороны, обосновывает существование предельной массы, что является следствием с неизбежностью наступающего релятивистского вырождения. До каких пор могут сжиматься звезды с массой, большей, чем 1,2 солнечной массы? Эта увлекательная, ставшая в последние годы весьма актуальной, проблема будет обсуждаться в § 24.
Вещество недр белых карликов отличается высокой прозрачностью и теплопроводностью. Хорошая прозрачность этого вещества опять-таки объясняется принципом Паули. Ведь поглощение света в веществе связано с изменением состояния электронов, обусловленном их переходами с одной орбиты на другую. Но если подавляющее большинство «орбит» (или «траекторий») в вырожденном газе «занято», то такие переходы весьма затруднены. Только очень немногие, особенно быстрые электроны в плазме белого карлика могут поглощать кванты излучения. Теплопроводность вырожденного газа велика — тому примером служат обыкновенные металлы. По причине очень высоких прозрачности и теплопроводности в веществе белого карлика не могут возникать большие перепады температуры. Почти весь перепад температуры, если двигаться от поверхности белого карлика к его центру, происходит в очень тонком, наружном слое вещества, который находится в невырожденном состоянии. В этом слое, толщина которого порядка 1% от радиуса, температура возрастает от нескольких тысяч кельвинов на поверхности примерно до десяти миллионов кельвинов, а затем вплоть до центра звезды почти не меняется.
Рис. 10.2: Эмпирическая зависимость светимости белых карликов от их температуры. |
27
28