Выбрать главу

Белые карлики хотя и слабо, но все-таки излучают. Что является источником энергии этого излучения? Как уже подчеркивалось выше, водорода, основного ядерного горючего, в недрах белых карликов практически нет. Он почти весь выгорел на стадиях эволюции звезды, предшествовавших стадии белого карлика. Но, с другой стороны, спектроскопические наблюдения с очевидностью указывают на то, что в самых наружных слоях белых карликов водород имеется. Он либо не успел выгореть, либо (что более вероятно) попал туда из межзвездной среды. Не исключено, что источником энергии белых карликов могут быть водородные ядерные реакции, происходящие в очень тонком сферическом слое на границе плотного вырожденного вещества их недр и атмосферы. Кроме того, белые карлики могут поддерживать довольно высокую температуру своей поверхности путем обычной теплопроводности. Это означает, что не имеющие источников энергии белые карлики остывают, излучая за счет запасов своего тепла. А эти запасы весьма солидны. Так как движения электронов в веществе белых карликов обусловлены явлением вырождения, запас тепла в их недрах содержится в ядрах и ионизованных атомах. Полагая, что вещество белых карликов состоит в основном из гелия (атомный вес равен 4), легко найти количество тепловой энергии, содержащейся в белом карлике:

(10.5)

где mH — масса атома водорода, k — постоянная Больцмана. Время охлаждения белого карлика можно оценить, поделив ET на его светимость L. Оно оказывается порядка нескольких сотен миллионов лет.

На рис. 10.2 для ряда белых карликов приведена эмпирическая зависимость светимости от поверхностной температуры. Прямые линии суть геометрические места постоянных радиусов. Последние выражены в долях солнечного радиуса. Похоже на то, что эмпирические точки хорошо укладываются вдоль этих прямых. Это означает, что наблюдаемые белые карлики находятся на разных стадиях остывания.

В последние годы для десятка белых карликов было обнаружено сильное расщепление спектральных линий поглощения, обусловленное эффектом Зеемана. Из величины расщепления следует, что напряженность магнитного поля на поверхности этих звезд достигает огромного значения порядка десяти миллионов эрстед (Э). Столь большое значение магнитного поля, по-видимому, объясняется условиями образования белых карликов. Например, если предположить, что без существенной потери массы звезда сжимается, можно ожидать, что магнитный поток (т. е. произведение площади поверхности звезды на напряженность магнитного поля) сохраняет свое значение. Отсюда следует, что напряженность магнитного поля по мере сжатия звезды будет расти обратно пропорционально квадрату ее радиуса. Следовательно, она может вырасти в сотни тысяч раз. Этот механизм увеличения магнитного поля особенно важен для нейтронных звезд, о чем будет идти речь в § 22[ 29 ]. Интересно отметить, что большинство белых карликов не имеет поля более сильного, чем несколько тысяч эрстед. Таким образом, «намагниченные» белые карлики образуют особую группу среди звезд этого типа.

Глава 11 Модели звезд

В § 6 мы получили основные характеристики звездных недр (температура, плотность, давление), используя метод грубых оценок величин, входящих в уравнения, описывающие состояния равновесия звезд. Хотя эти оценки дают правильное представление о физических условиях в центральных областях звезд, они, конечно, совершенно недостаточны для понимания сходства и различия между разными звездами. Например, для решения важного вопроса, какая именно ядерная реакция (протон-протонная или углеродно-азотная) ответственна за излучение той или иной конкретной звезды, необходимо более совершенное знание условий в ее недрах. Наконец, остается пока не рассмотренной основная задача: каков физический смысл диаграммы Герцшпрунга — Рессела? Эта задача, как мы увидим ниже, теснейшим образом связана с проблемой эволюции звезд. Хотя запасы ядерной энергии в недрах звезд очень велики, все же их нельзя считать неисчерпаемыми. Рано или поздно (в зависимости от массы звезды) они подойдут к концу. Что будет при этом происходить со звездой? Как она будет менять свои свойства?

Чтобы понять связь между разными звездами и причины наблюдаемых различий между ними, надо хорошо знать мгновенное состояние разных звезд, как бы «моментальную фотографию» структуры их недр. Точно так же как реальные физические процессы можно представить как последовательность «квазистатических» состояний, очень медленный процесс эволюции звезды (обусловленный истощением запасов ее ядерного горючего) можно представить как последовательность ее равновесных конфигураций. Такие конфигурации, получаемые теоретическим, расчетным путем, носят название «звездных моделей».

Под «звездной моделью» понимается совокупность таблиц (или графиков), дающих «идеализированное» распределение плотности, температуры, давления, химического состава вещества звезды для разных глубин, выраженных в долях ее радиуса. Следует подчеркнуть, что такая модель отнюдь не тождественна реальной звезде. Все же хорошо рассчитанная модель, правильно учитывающая основные физические законы, определяющие структуру звезды, может (и должна!) давать в основном верное представление о свойствах вещества звездных недр. Было бы ошибочно считать, что расчет звездных моделей содержит в себе элемент произвола. Наоборот, он непрерывно и жестко контролируется в процессе самих вычислений. И, наконец, он после своего завершения должен находиться в полном согласии с наблюдаемыми свойствами «моделируемых» звезд. Например, если речь идет о расчете модели звезды главной последовательности, у рассчитанной модели должно выполняться соотношение «масса — светимость».

Если бы была возможность непосредственно наблюдать внутренние области звезд, не было бы надобности в построении их моделей. Ведь структуру туманностей, которые «видны насквозь», мы получаем непосредственно из оптических и радиоастрономических наблюдений. Увы, недра звезд скрыты от нас гигантской толщей звездного вещества и почти нет шансов «увидеть», что там происходит. Мы подчеркнули слово «почти», так как все-таки имеется одна возможность непосредственного наблюдения звездных недр, о которой было рассказано в § 9. Итак, построение звездных моделей есть процедура вынужденная, иначе мы не могли бы делать количественных выводов об основных тенденциях развития большей части вещества во Вселенной.

Как же рассчитываются звездные модели? Прежде всего основой таких расчетов являются физические законы, определяющие равновесную конфигурацию звезды. Об этих законах уже шла речь в § 6 и 7. Это, во-первых, условие гидростатического равновесия, которое должно выполняться для каждого элемента объема внутри звезды (см. формулу (6.1)). Во-вторых,— так называемое «условие лучистого равновесия», описывающее перенос излучения из недр звезды, к ее поверхности (см. уравнение (7.10)). Далее необходимо учитывать, как меняется непрозрачность звездного вещества в зависимости от изменения температуры и плотности, а также зависимость давления от плотности и температуры, т. е. «уравнение состояния». Для вещества «нормальных» звезд последнее описывается уравнением Клапейрона, а для белых карликов — формулой (10.1). Необходимо учитывать и очень сильную зависимость скорости выделения ядерной энергии от температуры (см. стр. 246). Кроме того, считаются заданными такие основные параметры «моделируемых» звезд, как их масса, светимость и радиус.

Ввиду сложности системы уравнений, описывающих состояние звезд, расчет модели не может быть сделан аналитически, т. е. по готовой, пусть даже очень громоздкой, формуле. Успех достигается только численным методом решения этих уравнений (являющихся, кстати, дифференциальными). Предполагается, что модель звезды сферически-симметричная, т. е. все характеристики какого-нибудь элемента ее объема (температура, плотность и пр.) зависят только от расстояния этого элемента от центра звезды. В чем же идея численного метода расчета? Представим себе, что звезда состоит из очень большого числа концентрических сферических слоев. В пределах каждого слоя (если он только выбран достаточно тонким) значения указанных характеристик можно считать постоянными. Зададим значения давления и температуры в центре звезды. Условия гидростатического равновесия позволят тогда найти давление на поверхности первой (самой внутренней) сферы. Далее, путем расчетов определяем, пользуясь формулой Клапейрона, температуру в центре. Затем, зная зависимость скорости ядерного энерговыделения от температуры и используя уравнение для переноса лучистой энергии (7.10), мы получим температуру на поверхности шаровой сферы, а затем, пользуясь формулой Клапейрона,— плотность. Такая процедура (как видим, довольно сложная!) позволяет по данным температуре, плотности и давлению в центре звезды получить те же основные характеристики на некотором относительно малом расстоянии от центра. После этого тем же методом процедура повторяется и получается значение характеристик звездного вещества, на поверхности второй сферы, радиус которой вдвое больше, чем у первой. Так, шаг за шагом, получается «разрез» всей звезды, т. е. значения основных характеристик ее вещества в зависимости от расстояния от центра. Для того чтобы расчет модели увенчался успехом, толщины воображаемых сфер, на которые разбивается звезда, должны быть достаточно малы. С другой стороны, конечно, непрактично делать их слишком маленькими, что привело бы к неоправданно большому увеличению объемов расчета. Практически количество таких сфер бывает порядка нескольких сотен, иногда даже нескольких тысяч.

вернуться

29

Из-за наличия сильного магнитного поля излучение белых карликов должно быть слегка поляризовано по кругу. Изучая зависимость этой поляризации от времени, можно, в принципе, определить периоды вращения белых карликов. В тех немногих случаях, для которых эти очень деликатные наблюдения были выполнены, периоды осевого вращения оказались довольно значительными, порядка суток. Этот результат должен иметь существенное значение для проблемы звездной эволюции.