Выбрать главу

Масса рассчитанной модели получается как результат суммирования «парциальных» масс, заключенных в пределах элементарных сфер. Учитывая «производство» термоядерной энергии в разных слоях, можно по окончании расчета получить теоретическую светимость звездной модели.

Раньше такие расчеты моделей выполнялись вручную, на арифмометрах. Однако последние три десятилетия расчеты моделей производятся преимущественно на электронных вычислительных машинах. Резкое увеличение «производительности труда», помимо облегчения работы вычислителя, позволило широко варьировать различные параметры, входящие в расчет, и выбирать из них те, которые дают разумные и непротиворечивые модели. В частности, условием непротиворечивости модели, дающей некоторые значения радиуса, массы и светимости звезды, является выполнение закона «масса — светимость», если речь идет о расчете модели звезды главной последовательности. Отчего же могут получиться в процессе расчетов модели, явно несоответствующие реальным звездам? В значительной степени это происходит из-за большой неуверенности в знании химического состава недр звезды, модель которой рассчитывается. Приходится при расчетах работать «методом проб и ошибок», отбрасывая такие предположения о химическом составе, которые приводят к явно несуразным результатам. Имеется и еще довольно специфическая причина расхождения между основными расчетными характеристиками модели звезды (т. е. ее массы, светимости и радиуса) и наблюдаемыми характеристиками соответствующей реальной звезды. Дело в том, что при некоторых условиях процесс переноса энергии в недрах звезды может менять свой характер. Например, перенос энергии путем лучеиспускания может смениться конвективным переносом. Это бывает по разным причинам. Так, если по мере погружения в глубину температура начинает расти довольно резко, лучеиспускание, возможности которого «ограничены», уже не в состоянии обеспечить транспортировку всей выделяющейся в недрах звезды энергии. Наступает неустойчивость, и доминирующим механизмом переноса энергии становится конвекция. Об этом речь шла уже в § 8. Поэтому в процессе вычислений, которые выполняются «шаг за шагом», следует внимательно следить и контролировать, как ведет себя механизм переноса энергии в строящейся модели звезды.

Следует также иметь в виду, что химический состав звезды, определяемый параметрами X, Y , Z (см. § 7), не останется постоянным для всей звезды, а может систематически и притом радикально отличаться в ее разных частях. Например, в центральной области звезды, из-за «выгорания» водорода у сравнительно старых звезд, X может быть значительно меньше, чем на периферии. Модели звезд, учитывающие это обстоятельство, носят название «неоднородных». Такие модели представляют значительный интерес, так как хорошо отражают действительность.

Приводя пример, как строится модель звезды, мы рассматривали такое построение идущим от центра к периферии. Можно и даже часто более удобно рассчитывать модель от поверхности к центру. В этом случае задаются радиус и светимость (или температура) звезды. Естественно, что по окончании расчета суммарная масса сферических слоев должна быть равна массе звезды. Неверные методы расчета могут привести к «исчерпанию» массы модели звезды задолго до того, как расчеты дойдут до центра. Автор когда-то наблюдал такой любопытный феномен в работах некоторых начинающих специалистов в области внутреннего строения звезд...

Рис. 11.1: Модель массивной звезды главной последовательности.

В результате большой работы, проделанной астрофизиками-теоретиками, специалистами по внутреннему строению звезд, в настоящее время имеется много моделей звезд. Эти модели охватывают звезды, занимающие различные места на диаграмме Герцшпрунга — Рессела. Мы сейчас обсудим основные особенности моделей, соответствующие звездному населению нашей Галактики. Прежде всего представляют интерес модели звезд главной последовательности на диаграмме Герцшпрунга — Рессела. Оказывается, что структура звезд верхней части этой последовательности (горячие массивные объекты высокой светимости) значительно отличается от структуры красных карликов, заполняющих ее нижнюю правую часть. На рис. 11.1 наглядно представлена структура массивной горячей звезды. Эта модель была рассчитана для звезды, масса которой в 10 раз больше солнечной, радиус в 3,6 раза больше, а светимость (болометрическая) в 3000 раз превосходит светимость Солнца. Это означает, что моделируемая звезда имеет спектральный класс В0, причем температура ее поверхности около 25 000 К. Как показывают расчеты, в центральной части звезды перенос энергии осуществляется путем конвекции. Радиус конвективной зоны составляет около 25% радиуса звезды. Эта зона содержит в себе также около 25% полной массы звезды. Характерна довольно большая концентрация плотности вещества по направлению к центру. В самом центре плотность примерно в 25 раз превосходит среднюю плотность звезды и близка к 7 г/см3. Центральная температура довольно высока — около 27 миллионов кельвинов, т. е. примерно в два раза больше, чем у Солнца. Качественно этого и следовало ожидать согласно простой формуле (6.2), хотя температура оказалась несколько ниже, чем рассчитанная по этой формуле. Модель не очень сильно зависит от принятого химического состава звезды (X = 0,90, Y = 0,09, Z = 0,01). Любопытно, в каком направлении будет меняться структура звезд такого типа, если уменьшать массу? Расчеты показывают, что при этом, во-первых, в соответствии с формулой (6.2) будет уменьшаться центральная температура, во-вторых, будут уменьшаться относительные размеры конвективного ядра. У таких звезд основным источником энергии является углеродно-азотная реакция. Как мы видели, скорость этой реакции очень сильно растет с ростом температуры (см. формулу (8.3)). Поэтому для «отвода» выделяющегося при этой реакции огромного количества энергии уже недостаточно одного лишь лучистого ее переноса. В этом случае транспортировку энергии берет на себя конвекция. Это и объясняет существование у таких звезд более или менее протяженных конвективных ядер в центральных областях. Схема на рис. 11.1 представляет структуру типичных звезд верхней части главной последовательности. На рис. 11.2 схематически представлена модель красного карлика с массой 0,6, светимостью 0,56 и радиусом 0,64 солнечного. Следовательно, речь идет о модели карликовой звезды спектрального класса К — М. Обращает на себя внимание то обстоятельство, что структура такой звезды значительно отличается от структуры массивных, горячих звезд верхней части главной последовательности. Прежде всего, в центральных частях карликовых звезд уже совсем нет конвективной зоны. Наоборот, в наружных слоях таких звезд перенос энергии осуществляется преимущественно путем конвекции. В приведенной на рис. 11.2 модели конвективная зона занимает наружную часть звезды, причем там сосредоточено примерно 10% ее массы. Причина отличия в структуре звезд нижней части главной последовательности от структуры массивных горячих звезд кроется в сравнительно низкой температуре недр карликовых звезд. Из-за этого растет непрозрачность звездного вещества и перенос вырабатываемой в центре звезды энергии путем излучения становится затруднительным. На помощь приходит конвекция. Концентрация вещества к центру у карликовых звезд не так велика, как у горячих гигантов. Центральная плотность уже только в 20 раз превосходит среднюю, хотя абсолютное значение центральной плотности гораздо выше, около 60 г/см3. В согласии с формулой (6.2) центральная температура в рассматриваемой модели карликовой звезды сравнительно низка — около 9 миллионов кельвинов. При такой температуре энергетика карликовых звезд обеспечивается только протон-протонной реакцией.