Рис. 11.2: Модель красного карлика. |
Солнце является довольно типичной звездой средней части главной последовательности. Вместе с тем модель внутреннего строения Солнца по понятным причинам представляет для нас особый интерес.
Рис. 11.3: Модель Солнца. |
В последние годы было рассчитано несколько моделей Солнца, отличающихся численными значениями некоторых параметров расчета (прежде всего химического состава). Имеется еще одна важная особенность расчета моделей Солнца. Особенностью моделей звезд верхней и нижней частей главной последовательности, которые приведены на рис. 11.1 и 11.2, является их однородность. Это означает, что химический состав звезды предполагается постоянным во всем объеме звезды. Последнее предположение вполне естественно для карликовых звезд малой массы и сравнительно низкой светимости, время пребывания которых на главной последовательности превышает возраст Галактики. Поэтому в центральных частях этих звезд израсходована только малая часть первоначального «запаса» водородного «горючего». Что касается массивных звезд верхней части главной последовательности, то приведенная на рис. 11.1 модель относится к сравнительно молодым звездам этого типа. Иное дело Солнце. Возраст Солнца известен — около 5 миллиардов лет. За такой огромный срок уже можно ожидать некоторого уменьшения содержания водорода в центральной части нашего светила, так как заметная часть первоначального запаса водородного горючего Солнца уже израсходована— все-таки Солнце светит очень долго... Тут-то и кроется известная неопределенность в расчете модели Солнца, которая должна быть неоднородной. Какой процент солнечного водорода «выгорел» и в каком объеме? Ведь можно варьировать и объем, и процент «выгоревшего» водорода, что и делается в различных моделях. Любопытно, что центральная температура Солнца получается почти не зависящей от конкретных особенностей различных моделей. Она близка к 14 миллионам кельвинов — значению, которым мы пользовались в § 9. Это означает, что основной термоядерной реакцией в недрах Солнца является протон-протонная реакция, хотя небольшой вклад дает также углеродно-азотный цикл. Для модели, изображенной на рис. 11.3, принято, что в центральной области X = 0,50 и плавно растет до тех пор, пока на расстоянии от центра, равном 0,25 радиуса, становится равным около 75%, после чего, вплоть до самой поверхности, остается постоянным. Так же как и у красных карликов, у этой модели Солнца нет конвективного ядра, однако размеры наружной конвективной зоны значительно меньше. Заметим, что эта зона содержит всего около 2% массы Солнца. Центральная плотность Солнца довольно велика — она больше, чем у моделей звезд как верхней, так и нижней частей главной последовательности и равна 135 г/см3, что почти в 100 раз превосходит среднюю плотность. Такая большая концентрация массы к центру естественно объясняется частичным «выгоранием» водорода в центральных областях нашего светила. В сильнейшей степени этот эффект, как мы увидим, проявляется у красных гигантов. Развитие науки в нашу эпоху открыло совершенно неожиданную возможность уточнения модели Солнца, о чем уже шла речь в § 9.
Специфической особенностью субкарликов является очень низкое содержание тяжелых элементов. Об этом уже говорилось в § 1. Поэтому при расчете моделей таких звезд величина Z полагается равной нулю. Так как содержание тяжелых элементов имеет решающее значение для непрозрачности звездного вещества, то при малом Z прозрачность вещества субкарликов должна быть очень высокой, даже если температура сравнительно низка. Поэтому лучеиспускание достаточно эффективно переносит энергию и нет необходимости в развитии конвекции. Центральная температура таких звезд довольно чувствительно зависит от принятого содержания гелия, которое толком не известно.
Однако, пожалуй, самой интересной структурой обладают красные гиганты. На рис. 11.4 приведена модель довольно типичного красного гиганта, масса, радиус и светимость которого превосходят солнечные соответственно в 1,3, 21 и 225 раз.
В самой центральной части звезды-гиганта находится маленькое ядро, температура которого очень высока — 40 миллионов кельвинов. В этом ядре практически нет водорода — он уже весь «выгорел», превратившись в гелий. Вместе с тем температура там еще недостаточно высока для «тройной» гелиевой реакции (см. § 8).
Рис. 11.4: Модель красного гиганта. |
Рис. 11.5: Модель белого карлика. |
Из-за отсутствия источников энергии температура в области ядра постоянна. Поэтому такое ядро называется «изотермическим». Несмотря на очень малые размеры изотермического ядра (около одной тысячной радиуса звезды), в нем содержится примерно четверть всей массы звезды. Отсюда непосредственно следует, что плотность изотермического ядра огромна — порядка 3 105 г/см3. Это означает, что электронный газ в ядре вырожден (см. § 10). Следовательно, по своим свойствам вещество изотермического ядра красного гиганта не отличается от вещества белых карликов. Они сходны не только по средней плотности, но и по химическому составу и отсутствию ядерных реакций. Поэтому мы имеем все основания утверждать, что в центре красного гиганта находится ... белый карлик! Этот результат имеет большое значение для проблемы происхождения белых карликов, о чем речь будет идти в следующем параграфе.