В наибольшем блеске сверхновая звезда должна быть сверхзвездой — не только сверхяркой, но и сверхгромадной. Она должна быть в тысячи раз больше Солнца по диаметру, размером во всю солнечную систему. После вспышки же, судя по ядру крабовидной туманности, она в 50 раз меньше Солнца, т. е. лишь вдвое больше Земли, и ее средняя плотность должна составлять около 300 000 г/см'.
Наперсток с веществом этой звезды будет весить 300 килограммов и потребует для перевозки грузовик; правда, дно грузовика от такого давления проломится.
Здесь кончается то, что можно вывести из наблюдений, так как если после вспышки от сверхновой осталось что-либо подобное звезде (вся целиком звезда разрушиться не могла), то оно будет невидимо нам из-за своей слабой яркости.
Пока же отметим, что крабовидная туманность особенно сильно излучает красные лучи, обязанные некоторым линиям спектра азота. Это заставило поискать подтверждения тому, что яркая новая звезда, наблюдавшаяся Кеплером в 1604 году в созвездии Змеедержца, тоже была сверхновой. Окрестности места, указанного Кеплером, в 1943 году были сфотографированы на пластинках, чувствительных к красным лучам, и на снимке обнаружилась невидимая ранее слабая туманность. Спектр ее оказался похожим на спектр крабовидной туманности, и центр ее совпал с местом вспышки новой звезды Кеплера. В центре туманности нет звезд ярче 18,5-звездной величины.
По-видимому, звезда Кеплера, а также новая звезда, бывшая ярче Венеры и наблюдавшаяся даже днем Тихо Браге в 1572 году в созвездии Кассиопеи, были тоже сверхновыми звездами, вспыхнувшими в нашей Галактике.
Изучение сверхновых звезд насчитывает всего лишь десяток лет. Вероятно, в скором времени природа сверхновых звезд, их загадочные возникновение и конец будут выяснены уже значительно лучше, чем теперь.
Чем живут звезды
«Мы едим, чтобы жить», говорит пословица. Усвоение пищи сообщает живым существам энергию, которую они и расходуют в движении. Всякая машина для работы требует, чтобы ее чем-либо питали. Станки пожирают электроэнергию, электростанции пожирают уголь — окаменелые растения далекого прошлого; эти растения пожирали солнечное тепло и свет. Но что же пожирает само Солнце? За счет чего звезды расходуют такие чудовищные количества энергии? Она должна пополняться, ибо в природе «вечного двигателя» нет и быть не может, чего, к сожалению, не знают до сих пор некоторые горе-изобретатели.
Если бы Солнце состояло из лучшего донецкого угля и горело, то, получай оно для этого в достаточном количестве кислород, оно сгорело бы целиком примерно за 1500 лет.
Некогда существовало мнение, что энергия Солнца поддерживается падением на него метеоритов. Их энергия превращается при падении в теплоту, поддерживающую излучение Солнца. Такой способ питания помог бы Солнцу не больше, чем нам, если бы мы вздумали вскипятить бочку воды, ставя на ее крышку горячие утюги.
Кроме того, метеоритов должно было бы сыпаться на Солнце невероятно много, и они так быстро увеличивали бы массу Солнца, что это было бы заметно.
Энергия должна в Солнце поступать изнутри к поверхности, как это показывают нам теперь все данные о природе Солнца.
Энергия Солнца могла бы пополняться за счет его сжатия, уменьшения в размерах. При этом энергия тяготения к центру переходила бы в энергию тепловую. Вычислено, что если бы даже Солнце было некогда бесконечно большим, то и в этом случае его сжатия до современного размера хватило бы на поддержание его энергии всего лишь в течение 20 миллионов лет. Между тем доказано, что земная кора существует и освещается Солнцем гораздо дольше. Сжатие может иметь и наверное имеет место, но не оно служит главным источником солнечной энергии.
Не состоят ли недра звезд из радиоактивных элементов, таких, как торий, уран и радий? Распадаясь, эти элементы выделяют теплоту. Если бы Солнце целиком состояло из радия (а надо сказать, что на Земле его всего-навсего добыто в чистом виде из горных пород пока еще только несколько граммов), то оно излучало бы больше энергии, чем действительное Солнце. Но при большой начальной расточительности, неизбежной при радиоактивном распаде, интенсивность его излучения спадала бы слишком быстро. Радий не мог бы поддерживать наше Солнце так долго, как это необходимо. Допустить же существование тяжелых, сверхрадиоактивных элементов (неизвестных на Земле), да еще сгустившихся в недрах Солнца, современная физика и теория внутреннего строения звезд не позволяют.