Аннотация
Книга основана на курсе топологии, который читался студентам первого и второго курса НМУ, а также американским студентам в рамках программы Math in Moscow. Первая часть - общее введение в топологию, с акцентом на маломерные геометричеcкие объекты (графы, поверхности, кривые на плоскости, узлы) и их инварианты (эйлерова характеристика, степень отображения окружности, степень точки относительно кривой, фундаментальная группа). Вторая часть представляет собой введение в алгебраическую топологию, включающее гомотопические группы, клеточные, симплициальные и сингулярные гомологии, вместе с такой классикой, как двойственность Пуанкаре, теория препятствий, теоремы Гуревича, Хопфа-Уитни, Лефшеца, пространства Эйленберга-Маклейна, векторные расслоения.
Для студентов и преподавателей вузов.
Комментарии к книге "Введение в топологию: Лекционный курс [2020]"